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Abstract This paper introduces MiniCP, a lightweight, open-source solver for constraint pro-
gramming. MiniCP is motivated by educational purposes and, in particular, the desire to provide
the core implementation of a constraint-programming solver for students in computer science and
industrial engineering. The design of MiniCP provides a one-to-one mapping between the the-
oretical and implementation concepts and its compositional abstractions favor extensibility and
flexibility. MiniCP obviously does not support all available constraint-programming features and
implementation techniques, but these could be implemented as future extensions or exploratory
projects. MiniCP also comes with a full set of exercises, unit tests, and development projects.

1 Introduction

Motivation Constraint programming [4,12,28] originated from the logic-programming commu-
nity in the mid-1980s. It is now used in numerous commercial applications, primarily in the areas
of scheduling, routing, and timetabling, and is often hybridized with mathematical programming
through decomposition techniques such as logical Benders decomposition and column generation.
It is supported by several commercial solvers (e.g., CP Optimizer, an IBM product) and a mul-
titude of open-source solvers. An interesting review of scheduling applications of CP Optimizer
can be found in [15].

Yet, many undergraduate students in computer science and industrial engineering graduate
without knowledge of constraint programming. The primary reason is simple: Constraint pro-
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2 L. Michel et al.

package LOC
engine.core 827
engine.constraints 1265
examples 641
state 661
cp 229
search 184
util 194
unit tests 3822

Table 1: MiniCP packages and their lines of codes (LOC) (computed with sloccount).

gramming is simply not taught in most universities and there is a lack of high-quality teaching ma-
terial in the community. Exacerbating this situation is the fact that most constraint-programming
solvers have been built for speed and functionality, not for education purposes. As a result, they
are often hard to penetrate and modify, and are not particularly well-adapted for use in the
classroom. It is often the case that core concepts are hard to isolate among the wide variety of
optimizations and features. This should be contrasted to the MiniSat solver for Boolean sat-
isfiability which has largely contributed to the dissemination of (CDCL) SAT solvers. MiniSat
has a neat, minimalist, and well-documented architecture that has enabled several generations
of students and researchers to enter the field and make significant contributions.

This work is an attempt to bridge this gap: It introduces MiniCP, a light, open-source
constraint-programming solver whose primary goal is to foster education in constraint program-
ming. The hope is that MiniCP provides the core material to support classes in constraint pro-
gramming at any institution with minimal effort. Not only does the MiniCP project contribute
a minimalist and neat constraint-programming kernel; It also provides exercises, unit tests, and
development projects. Ultimately, this educational solver will be accompanied by slides and video
lectures that could be used for flipped offerings.

The Design and Implementation of MiniCP The key design decision in MiniCP is the one-
to-one mapping between the theoretical foundations of constraint programming and the solver
architecture. The existence of this mapping fundamentally simplifies the understanding of the
implementation. The second design decision in MiniCP is the focus on extensibility and compo-
sitionality: It is reasonably simple to add new features to MiniCP and the interactions between
these features are limited. The organization of this paper reflects these design decisions. The pa-
per starts with a review of the foundations of constraint programming before focusing on its two
main components: filtering and search. This is followed by a presentation of some more advanced
features in filtering and search.

It is important to emphasize that MiniCP does not attempt to cover every aspect of con-
straint programming: This would defeat the purpose of this endeavor. Topics such as model
reformulation and transformation, parallelization, richer variable types, e.g., set or continuous
variables, learning-based constraint-programming solvers, copy-based solvers, soft constraints,
and MDD-based approaches to name only a few are not discussed in this paper. This does not
mean that they cannot be supported in MiniCP. Rather these topics could be the subject of
future extensions or exploratory projects.

MiniCP is implemented in Java 8 to make it accessible to a large audience. The code makes
extensive use of closures introduced in Java 8 through the concept of functional interfaces. Ap-
pendix A contains a review of Java closures for completeness. Although the focus in MiniCP has
been on simplicity and clarity (see Table 1 for its size), its performance is reasonable. Appendix
B provides some benchmark results to substantiate this statement.
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MiniCP: A Lightweight Solver for Constraint Programming 3

Influences The design of MiniCP is primarily influenced by the constraint-programming sys-
tems cc(fd) [34], Comet [5,8], Objective-CP [31], and OscaR [20]. Some inspiration also came
from the microkernel architecture introduced in [17]. Other solvers sharing similar designs are CP
Optimizer [15], OR-Tools [19], Jacop [14], Mistral [?] and CHOCO [21]. Most of the implemen-
tation techniques in MiniCP were introduced in the constraint-programming system CHIP [28,
1]. For brevity, the presentation only provides references when this is not the case. Readers can
also consult the chapter on implementation in the handbook of constraint programming [25].

Outline The rest of this paper is organized as follows. Section 2 reviews the foundations of
constraint programming and Section 3 provides a preview of MiniCP through three running
examples. Section 4 covers the filtering component of constraints and Section 5 its search com-
ponent. Sections 6 and 7 consider some advanced filtering and search functionalities. Section 8
discusses the teaching material and Section 9 concludes the paper.

2 Foundations of Constraint Programming

This section presents the foundations of MiniCP. It covers, at a high-level level of abstraction,
key concepts of constraint programming that will be refined in the actual implementation of
MiniCP. Section 2.1 defines constraint satisfaction problems, the class of problems addressed by
constraint-programming solvers. Section 2.2 then introduces filtering algorithms, the fundamental
computational building block of constraint programming. Section 2.3 specifies and shows how
to implement constraint propagation in terms of filtering algorithms. Section 2.4 proposes the
concept of branching scheme that forms the basis of the search component of MiniCP. Finally,
Section 2.5 specifies the search algorithm implemented in the MiniCP solver.

2.1 Constraint Satisfaction Problems

Constraint-programming systems are tools to solve constraint satisfaction problems. A constraint
satisfaction problem (CSP) is defined in terms of variables, domains, and constraints. This section
formalizes these concepts which form the core of the MiniCP solver. Many generalizations are
possible and some are discussed later in the paper.

Definition 1 (Domain) A domain is a finite set of discrete values in Z.

Domains are denoted by the letter D and their values by the letter v. Domains support a variety
of operations including membership (v ∈ D), lower bound (min(D) = minv∈D v), and upper
bound (max(D) = maxv∈D v). Domains inherit the total ordering of Z.

Definition 2 (Decision Variable) A decision variable x is associated with a domain D. It is
instantiated (bound) if |D| = 1.

Definition 3 (Constraint) A constraint c is a relation defined over a set of decision variables.
Vars(c) denotes the variables of constraint c.

Definition 4 (CSP) A CSP is a triplet 〈X,D, C〉 where X is a set of decision variables, D is
the Cartesian product of their domains, and C is a set of constraints defined over subsets of X.
The domain of a decision variable x is denoted by D(x). Note that D = D(x0)× · · · × D(xn−1)
when X = {x0, . . . , xn−1}.
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4 L. Michel et al.

Solving a CSP amounts to assigning the decision variables to values in their domains so that
all constraints are satisfied. For simplicity, the presentation often assumes an underlying CSP
〈X,D, C〉 and refers to D as the domain of the CSP. Given two domains D1 and D2 over the
same variables {x0, . . . , xn−1}, the intersection D1 ∩ D2 is defined as D1(x0) ∩ D2(x0) × . . . ×
D1(xn−1) ∩ D2(xn−1).

Definition 5 (Candidate Solution) A candidate solution σ assigns to each decision variable
x a value in its domain, i.e., σ(x) ∈ D(x).

Definition 6 (Constraint Valuation) The valuation of a constraint c with respect to a
candidate solution σ is the Boolean value c(σ) which stands for c(σ(x0), . . . , σ(xn−1)) where
Vars(c) = {x0, . . . , xn−1}.

Definition 7 (Solution) A solution σ to a CSP 〈X,D, C〉 is a candidate solution that satisfies
all constraints, i.e., ∀c ∈ C : c(σ). The set of solutions to a CSP 〈X,D, C〉 is denoted by
S(〈X,D, C〉).

Note that a solution to a CSP can also be viewed as a domain D that binds all variables, i.e.,
|D(x)| = 1 for every variable x. These concepts can also be generalized to the case where an
objective function must be minimized (or maximized).

Definition 8 (COP) A constraint optimization problem (COP) is a quadruplet 〈X,D, C, f〉 in
which f is a real function over a subset of variables Vars(f) ⊂ X.

Definition 9 (Function Valuation) The valuation of a function f with respect to a can-
didate solution σ is the value f(σ) which stands for f(σ(x0), . . . , σ(xn−1)) where Vars(f) =
{x0, . . . xn−1}.

Definition 10 (Optimal Solution) An optimal solution to a COP 〈X,D, C, f〉 is a solution
σ∗ such that ∀σ ∈ S(〈X,D, C〉) : f(σ∗) ≤ f(σ).

2.2 Filtering Algorithms

Filtering algorithms are the cornerstone of constraint programming. Their goal is to prune values
from the variable domains without removing any solutions. Each constraint is associated with a
filtering algorithm which receives domains for the constraint variables as input and returns new
domains.

Definition 11 (Filtering Algorithm) A filtering algorithm Fc for a constraint c is a function
from domain to domain satisfying

∀D : Fc(D) ⊆ D ∧ S(〈Vars(c),D, {c}〉) = S(〈Vars(c),Fc(D), {c}〉).

A filtering operator Fc is monotone if D1 ⊆ D2 ⇒ Fc(D1) ⊆ Fc(D2).

Constraint-programming solvers typically aim at enforcing some strong consistency properties
on the output of a filtering algorithm. Bound and domain consistency are two such desirable
properties. Bound consistency requires that, after filtering, the bounds of every variable belong
to a solution of the constraint assuming interval domains. Domain consistency requires that, after
filtering, each value in the variable domains belong to a solution of the constraint. Domain con-
sistency is the strongest property that can be enforced by a filtering algorithm when considering
only one constraint at a time, and when restricted to pruning domain values only.
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MiniCP: A Lightweight Solver for Constraint Programming 5

Algorithm 1: The Constraint-Propagation Algorithm.

Data: The CSP 〈X,D0, C〉
Result: The greatest fixpoint domain as defined in equation (1)

1 pruningNeeded← true;

2 D ← D0;
3 while pruningNeeded do
4 Dp ← FC(D);
5 pruningNeeded← Dp 6= D;
6 D ← Dp;

Definition 12 (Bound Consistency) A constraint c over variables Vars(c) = {x0, . . . , xn−1}
is bound-consistent wrt D if and only if, for every i ∈ 0..n− 1, there exist values

vj ∈ {min(D(xj)), . . . ,max(D(xj))} (0 ≤ j < n : j 6= i)

such that c(v0, · · · , vi−1,min(D(xi)), vi+1, · · · , vn−1)∧c(v0, · · · , vi−1,max(D(xi)), vi+1, · · · , vn−1)
holds.

Definition 13 (Domain Consistency) A constraint c over variables Vars(c) = {x0, . . . , xn−1}
is domain-consistent wrt D if and only if, for every i ∈ 0..n− 1 and every value vi ∈ D(xi), there
exist values vj ∈ D(xj) (0 ≤ j < n : j 6= i) such that c(v0, · · · , vi−1, vi, vi+1, · · · , vn−1) holds.

Definition 14 (Consistent Filtering Algorithm) A filtering algorithm Fc for a constraint
c is bound-consistent (resp. domain-consistent) if, for all domain D, c is bound-consistent (resp.
domain-consistent) wrt Fc(D).

Example 1 (Bound-Consistent Filtering Algorithm of x = y + 1.) Consider a constraint c of the
form x = y + 1. A bound-consistent filtering algorithm returns the domains

Fc(D)(x) = {v ∈ D(x) : min(D(y)) + 1 ≤ v ≤ max(D(y)) + 1},
Fc(D)(y) = {v ∈ D(y) : min(D(x))− 1 ≤ v ≤ max(D(x))− 1}.

Example 2 (Domain-Consistent Filtering Algorithm of x = y+1.) Consider a constraint c of the
form x = y + 1. A domain-consistent filtering algorithm returns the domains

Fc(D)(x) = {v ∈ D(x) : v − 1 ∈ D(y)},
Fc(D)(y) = {v ∈ D(y) : v + 1 ∈ D(x)}.

It is useful to point that, while the domain-consistent filtering algorithm must be applied each
time a value is pruned from the domain of x or y, this is not the case for the bound-consistent
version. Indeed, for enforcing bound consistency, it suffices to apply the filtering when the bounds
of x or y are updated. MiniCP implements this optimization by associating dedicated lists of
constraints with variables as discussed in Section 4.3.

2.3 Constraint Propagation

The core of a constraint-programming solver is a propagation algorithm that applies filtering
algorithms until no more values can be pruned from the variable domains. Algorithm 1 depicts
the most basic constraint-propagation algorithm: It simply iterates the application of the filtering
algorithm associated with each constraint until none of them reduces the domains. More formally,
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6 L. Michel et al.

Algorithm 2: The Data-Driven Constraint-Propagation Algorithm.

Data: The CSP 〈X,D0, C〉
Result: The greatest fixpoint domain as defined in equation (1)

1 Q← C;

2 D ← D0;
3 while |Q| > 0 do
4 c = dequeue(Q);
5 Dp ← Fc(D);
6 V ← {x ∈ Vars(c) : Dp(x) 6= D(x)};
7 if |V | > 0 then
8 Q← Q ∪ {c : |Vars(c) ∩ V | > 0} ;

9 D ← Dp;

Algorithm 1 computes the greatest fixpoint of the operator FC =
⋂

c∈C Fc(D). In other words,
given a CSP 〈X,D, C〉, the constraint propagation F returns a domain D∗ defined by

D∗ = max{Dp ⊆ D : Dp = FC(D)}. (1)

When the filtering algorithms are monotone, this greatest fixpoint is unique and hence the order
in which the filters are applied has no impact on the results. The constraint propagation can
also be viewed as transforming a CSP 〈X,D, C〉 into a CSP 〈X,D∗, C〉 such that S(〈X,D, C〉) =
S(〈X,D∗, C〉) and D∗ satisfies Equation 1. If |D∗| = 0, the CSP has no solution. If |D∗| = 1,
then D∗ is a solution. Otherwise, no conclusion can be drawn. When |D∗| = 0, we say that the
constraint propagation fails or is a failure. When |D∗| = 1, we say that the propagation succeeds
or is a success.

Algorithm 1 is rather naive as it applies all filtering algorithms each time the domain of
a variable is pruned. In practice, constraint-programming solvers only reconsider the filtering
algorithms for constraints whose variables have seen their domains reduced. This is captured in
Algorithm 2 which is organized around a queue of constraints. Initially, the queue Q contains
all constraints and each iteration pops a constraint from Q and applies its filtering algorithm.
It then enqueues all constraints that have at least one variable whose domain has been pruned.
The algorithm terminates when the queue is empty.1 The MiniCP implementation goes one step
further by also avoiding to enqueue constraints whose filtering algorithms will not prune the
domains as discussed earlier. This is covered in detail in Section 4.3 where it is shown that each
variable is associated with several lists of constraints.

2.4 Branching

Constraint propagation may fail, succeed, or be inconclusive. In the last case, to make further
progress, constraint-programming solvers typically partition the CSP into a set of simpler CSPs.
Some solvers offer substantial flexibility to express how to branch, while others do not give any
control to users. MiniCP uses the concept of branching scheme to express the decomposition
process.

Definition 15 (Branching Scheme) A branching scheme for a CSP 〈X,D, C〉 is a set of CSPs
{〈X,D, C ∪ {c0}〉,. . . ,〈X,D, C ∪ {ck−1}〉} such that

S(〈X,D, C〉) =
⋃

i∈0..k−1

S(〈X,D, C ∪ {ci}〉)

1 When all the filtering algorithms are domain-consistent, Algorithm 2 is equivalent to the AC-3 algorithm in
[16].



F
in

a
l

F
eb

ru
a
ry

2
0
,

2
0
2
1

MiniCP: A Lightweight Solver for Constraint Programming 7

Algorithm 3: The Abstract Version of the MiniCP Search Algorithm.

Data: The CSP 〈X,D, C〉
Result: CPSearch(〈X,D, C〉) = S(〈X,D, C〉)

1 D∗ ← F(〈X,D, C〉) ;
2 if |D∗| = 0 then
3 return ∅ ;

4 else if |D∗| = 1 then
5 return {D∗} ;

6 else
7 (c0, · · · , ck−1)← branch(〈X,D∗, C〉);
8 return

⋃k
i=1 CPSearch(〈X,D∗, C ∪ {ci}〉);

and, for all i, j with 0 ≤ i < j < k,

|S(〈X,D, C ∪ {ci}〉) ∩ S(〈X,D, C ∪ {cj}〉)| = 0.

Note that, to specify a branching scheme, it suffices to specify the constraints {c0, . . . , ck−1}.

Example 3 (Minimum Value Branching) The minimum value branching selects a free variable
x ∈ X and uses two constraints: x = min(D(x)) and x 6= min(D(x)).

Example 4 (Dichotomic Value Branching) The dichotomic value branching selects a free variable
x ∈ X and uses two constraints: x ≤ mid(D(x)) and x > mid(D(x)), where mid(D) is the mid-
point value in D.

2.5 Search

It is now possible to specify the search algorithm underlying MiniCP as a simple recursive algo-
rithm implementing a depth-first search with chronological backtracking. Procedure CPSearch
is depicted in Algorithm 3; It takes a CSP as input and returns its solutions. The algorithm
first performs constraint propagation (line 1). If the propagation fails, the algorithm returns no
solution (lines 2–3). If the propagation succeeds, it returns the solution (lines 4–5). Otherwise,
the algorithm applies the branching scheme to obtain a set of constraints (line 7). The resulting
CSPs are solved recursively and the algorithm returns the union of their solutions. The main
difference between this abstract version and the actual implementation in MiniCP is the way
the domains and the constraints are updated which is discussed in Section 4.4.

Note that MiniCP solves optimization problems as a sequence of feasibility problems. Each
time a solution with objective value f∗ is found, MiniCP searches for a feasible solution whose
objective improves upon f∗. The actual implementation, which also avoids redundant computa-
tions, is discussed in Section 5.4.

3 A Preview of MiniCP

This section presents three simple MiniCP programs. Their main purpose is to provide a clear
link between the theoretical foundations and the implementation. These programs will intro-
duce the concrete counterparts to the abstract concepts presented in Section 2: The decision
variables, the domains, the constraints, the branching scheme, and the search. Although these
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constraint programs are relatively simple, they convey the essence of MiniCP and its imple-
mentation. More sophisticated techniques are presented later in the paper. Curious readers can
refer to the source code repository to check out the version tagged 1.0.1 and consult the
files NQueensPaper.java, MagicSeriePaper.java and QAPPaper.java to see the ac-
tual code with all the necessary Java details (e.g., import statements).

3.1 The N-Queens Problem

The first MiniCP program solves the well-known queens problem which amounts to placing n
queens on an n×n checkerboard so that no two queens can attack each other, i.e., no two queens
are on the same row, column, or diagonals.

The MiniCP model uses a simple encoding that associates a decision variable qi with each
column i ∈ {0, . . . , n− 1} to represent the row of the queen placed in this column. By virtue of
the encoding, it is only necessary to impose constraints that ensure that no queens are on the
same row and diagonals, which can be expressed as

∀ i, j ∈ 0..n− 1 ∧ i < j : qi 6= qj
∀ i, j ∈ 0..n− 1 ∧ i < j : qi − i 6= qj − j
∀ i, j ∈ 0..n− 1 ∧ i < j : qi + i 6= qj + j

The MiniCP program is presented in Listing 1 and contains three main parts: the declaration
of the decision variables (line 3), the constraint specification (lines 5–10), and the branching
scheme (lines 12–28). Line 2 creates a CP solver cp and line 3 creates the array q of n decision
variables, each with a domain {0..n − 1}. Lines 5–10 create the binary disequations and post
them to the CP solver. A disequation such as qi + i 6= qj + j boils down to qi 6= qj + (j − i)
which is a binary notEqual constraint x 6= y + v since qi and qj are two variables and j − i is
a constant.

The branching scheme in lines 12–28) is given as a closure (see Appendix A for a review
of Java closures) that will be applied repeatedly during the search as specified in Algorithm 3.
The branching has two main parts: the selection of the variable to assign (lines 13–18) and the
creation of the branching constraints (lines 19–27). The variable selection is extremely simple:
The first free variable is selected. The code simply iterates over all variables in the array and
computes the index idx of this free variable. More complicated variable selections (e.g., selecting
the free variable with the smallest domain) can be easily implemented in a similar way. The
remaining of the branching scheme generates branching constraints that are represented as an
array of procedures (i.e., void to void closures). If all variables are bound, then the branching
scheme returns an empty array (line 20) to notify the search it is a solution. Otherwise, the
code implements the minimum value branching specified in Example 3. In Lines 24–25, the
branching scheme defines two closures which will create the branching constraints when called
and these closures are inserted in the array of branching decisions in line 26. The branching
scheme is passed as a parameter to a depth-first search object in Line 12. The depth-first search
is performed during the solve call in line 32 and computes all solutions. To print the solution,
it suffices to use the block in lines 29-31 that specify a closure to execute each time the solver
produces a solution.

The binary disequations in lines 5–10 can be replaced by three global constraints:

1 import static minicp.cp.Factory.*;
2 ...
3 cp.post(allDifferentAC(q));
4 cp.post(allDifferentAC(makeIntVarArray(cp,n,i -> minus(q[i],i))));
5 cp.post(allDifferentAC(makeIntVarArray(cp,n,i -> plus(q[i],i))));
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Listing 1: A MiniCP Program for the N-Queens Problem

1 int n = 8; // number of queens and size of board
2 Solver cp = Factory.makeSolver();
3 IntVar[] q = Factory.makeIntVarArray(cp,n,n);
4

5 for (int i = 0; i < n; i++)
6 for (int j = i+1; j < n; j++) {
7 cp.post(Factory.notEqual(q[i], q[j]));
8 cp.post(Factory.notEqual(q[i], q[j], i-j));
9 cp.post(Factory.notEqual(q[i], q[j], j-i));

10 }
11

12 DFSearch dfs = Factory.makeDfs(cp, () -> {
13 int idx = -1; // index of the first variable that is not bound
14 for (int k = 0; k < q.length; k++)
15 if (q[k].size() > 1) {
16 idx = k;
17 break;
18 }
19 if (idx == -1)
20 return new Procedure[0];
21 else {
22 IntVar qi = q[idx];
23 int v = qi.min();
24 Procedure left = () -> cp.post(Factory.equal(qi, v));
25 Procedure right = () -> cp.post(Factory.notEqual(qi, v));
26 return new Procedure[]{left,right};
27 }
28 });
29 search.onSolution(() ->
30 System.out.println("solution:" + Arrays.toString(q))
31 );
32 dfs.solve();

Global constraints are a fundamental concept in constraint programming as they enable to cap-
ture substructures arising in many applications. These global constraints can then be associated
with dedicated filtering algorithms that exploits the properties of these substructures. In the
queens problem, the global constraints express that a collection of variables must take different
values. For instance, Line 3 specifies that all variables in array q must take different values.
Line 4 above deserves some explanations. The sub-expression

1 Factory.makeIntVarArray(cp,n,i -> Factory.minus(q[i],i))

makes use of the function

IntVar[] makeIntVarArray(int n,Function<Integer,IntVar> body)

which creates an array of size n whose variables are obtained using the closure parameter body.
In the above instruction, the function Factory.minus(q[i],i) returns an integer variable,
say x[i], whose values are subject to the constraint x[i] = q[i] - i. As a result, the second
allDifferent constraint specifies that the expressions qi − i (0 ≤ i < n) evaluate to different
values.

The MiniCP code makes heavy use of the factory design pattern [?] to create solvers, vari-
ables, and constraints using static methods (e.g., makeSolver, makeIntVarArray, sum,
isEqual, mul, makeDfs) of the Factory class. It is possible to use the Java import
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static instruction to make the factory calls implicit as illustrated in the next MiniCP ex-
ample.

3.2 The Magic Series Problem

A series S = (s0, s1, . . . , sn−1) is magic if si represents the number of occurrences of i in S.
Listing 2 gives a MiniCP program for finding magic series. The core of the MiniCP model is
the constraints

n−1∑
j=0

1(sj = i) = si (0 ≤ i < n)

where 1 denotes the indicator function. The last two constraints,

n−1∑
j=0

sj = n

and
n−1∑
j=0

j × sj = n

express properties of magic series and help reduce the search space.
The MiniCP program is a direct encoding of these constraints. It makes use of the sum(a,s)

constraint that holds if the elements in array a sum to s. It also uses the isEqual(x,v) indi-
cator function that returns a 0-1 variable whose value is 1 if x is equal to v and 0 otherwise. The
use of indicator functions is often called reification in constraint programming and is explained
in Section 6. The declaration of a local variable fi set to i on line 8 is the consequence of a Java
idiosyncrasy that precludes the use of i in the closure on the following line as it gets modified
through subsequent iterations.

The impact of the last two constraints is significant: Without them, the search for a magic
series of length 200 requires 32,430 choices. With them, only 400 choices are needed.

3.3 A Quadratic Assignment Problem

This section considers an assignment problem where a set of n facilities must be assigned to n
different locations. The distance between two locations l and m is given by dl,m and each pair
of facilities (i, j) is associated with a weight wi,j . The goal of the assignment is to minimize the
sum of the weighted distances between the locations of each pair of facilities.

n−1∑
i=0

n−1∑
j=0

dxi,xj
· wi,j

The model is given in Listing 3. It assumes the presence of two inputs: matrix w that specifies
the weights and matrix d that specifies the distances. It makes use of the element constraint
[?] that allows decision variables to index arrays and matrices and whose implementation is
discussed in Section 6.4. More specifically, element(d,x[i],x[j]) returns a variable whose
value is equal to the expression d[x[i]][x[j]].

To build the objective function, the MiniCP program creates an auxiliary variable dij for
the distance between two facilities i and j in the loop spanning lines 7–11. The same loop also
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Listing 2: A MiniCP Program for the Magic Series Problem

1 import static minicp.cp.Factory.*;
2

3 int n = 8; // size of the series
4 Solver cp = makeSolver();
5 IntVar[] s = makeIntVarArray(cp,n,n);
6

7 for(int i = 0; i < n; i++) {
8 final int fi = i;
9 cp.post(sum(makeIntVarArray(n, j -> isEqual(s[j], fi)), s[i]));

10 }
11 cp.post(sum(s,n));
12 cp.post(sum(makeIntVarArray(n, i -> mul(s[i], i)), n));
13

14 DFSearch dfs = makeDfs(cp, () -> {
15 // similar to n-queens search but on variables s[i]
16 });
17 dfs.onSolution(() ->
18 System.out.println("solution:" + Arrays.toString(s))
19 );
20 dfs.solve();

Listing 3: MiniCP model for the QAP

1 Solver cp = makeSolver();
2 IntVar[] x = makeIntVarArray(cp,n,n);
3

4 cp.post(allDifferent(x));
5 IntVar[] weightedDist = new IntVar[n*n]; // build the objective function
6 int k = 0;
7 for (int i = 0; i < n; i++)
8 for (int j = 0; j < n; j++) {
9 IntVar dij = element(d,x[i],x[j]);

10 weightedDist[k++] = mul(dij,w[i][j]);
11 }
12 IntVar totCost = sum(weightedDist);
13 Objective obj = cp.minimize(totCost);
14 DFSearch dfs = makeDfs(cp, () -> {
15 // similar to n-queens search but on variables x[i]
16 });
17 dfs.optimize(obj);

accumulates in array weightedDist all the weighted distance. Lines 12–13 then specify the
objective as the minimization of the sum of the weighted distances (the sum is held in a variable
totCost).

4 The Constraint Propagation Implementation

This section describes the MiniCP implementation of constraint propagation. Section 4.2 pro-
poses one possible implementation for domains and Section 4.3 describes the implementation
of variables. Section 4.4 discusses how to implement constraints and Section 4.5 depicts the
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Listing 4: Integer Variable Interface

1 public interface IntVar {
2 Solver getSolver();
3 int min();
4 int max();
5 int size();
6 boolean contains(int v);
7 boolean isBound();
8

9 void remove(int v);
10 void assign(int v);
11 void removeBelow(int v);
12 void removeAbove(int v);
13

14 void propagateOnDomainChange(Constraint c);
15 void propagateOnBoundChange(Constraint c);
16 void propagateOnBind(Constraint c);
17 }

Listing 5: Constraint Interface

1 public interface Constraint {
2 void post();
3 void propagate();
4 void setScheduled(boolean scheduled);
5 boolean isScheduled();
6 void setActive(boolean active);
7 boolean isActive();
8 }

constraint-propagation algorithms. Since many of these concepts refer to each other, the section
starts with a number of interfaces.

4.1 Interfaces

The Variable Interface The interface for integer variables is given in Listing 4 and offers three
classes of methods. First, it provides a number of accessors to query the variable domain. Second,
it offers a number of mutators to reduce the variable domain (i.e., removing a value, assigning a
value, removing values below a certain threshold, and removing values above a certain threshold).
Finally, it provides a number of methods to link variables and constraints. More specifically,
method propagateOnDomainChange(c) specifies that constraint c must be propagated each
time the domain of the variable is updated, method propagateOnBoundChange(c) specifies
that constraint c must be propagated each time one of its bounds is updated, and method
propagateOnBind(c) indicates that constraint c must be propagated when the variable is
bound.

The Constraint Interface The constraint interface is given in Listing 5. The main methods are
post and propagate. Method post is called once when the constraint is added to the MiniCP
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Listing 6: Objective Interface

1 public interface Objective {
2 void tighten();
3 }

Listing 7: The Domain Interface

1 public interface IntDomain {
2 public int min();
3 public int max();
4 public int size();
5 public boolean isBound();
6 public boolean contains(int v);
7 public void remove(int v,DomainListener l);
8 public void removeAllBut(int v,DomainListener l);
9 public void removeBelow(int v,DomainListener l);

10 public void removeAbove(int v,DomainListener l);
11 }

solver. It typically initializes internal data structures, links variables and constraints, and per-
forms the first propagation step. Method propagate is the core of the implementation: It applies
the filtering algorithm of the constraint and is called repeatedly. The remaining methods are used
for optimizing constraint propagation and are discussed in Section 4.5

The Objective Interface The objective interface is given in Listing 6. The sole method tighten
is meant to be called when the solver produces a solution to a constraint optimization problem
compelling the solver to produce a next solution whose quality strictly exceeds that of the
incumbent. If the COP is a minimization problem, the tighten method would pickup the
primal bound as value of the objective function and then impose the requirement that the
objective should be strictly less than this new primal bound.

The Domain Interface The interface of domains is given in Listing 7. The first set of methods
return the minimum and maximum values in the domain, the domain size, whether the variable
is bound, and whether a value v belongs to the domain. The remaining four methods respectively
remove, from the domain, value v, all values but v, all values smaller than v, and all value greater
than v. These last four methods receive as argument a domain listener, whose interface is given
in Listing 8, as proposed in [33]. A domain listener allows an (arbitrary) object to be notified of
various events on the domain, namely, when the domain becomes empty (empty), when it has
only one element (bind), when it has changed (change), or when its smallest (changeMin) or
largest (changeMax) value has changed. As mentioned in Section 2.2, this information is useful
to decide whether a constraint needs to be propagated after a domain update.

Solver Interface The Solver interface is shown in Listing 9. Method post is used to register
constraints. The minimize and maximize methods are available to state an objective function.
Method schedule is called to schedule a constraint for propagation and method fixPoint
implements algorithm 2. Method onFixPoint allows hooking up a procedure notified whenever
a fixpoint is computed.
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Listing 8: The Domain Listener Interface

1 public interface DomainListener {
2 public void empty();
3 public void bind();
4 public void change();
5 public void changeMin();
6 public void changeMax();
7 }

Listing 9: The Solver Interface

1 public interface Solver {
2 void post(Constraint c);
3 Objective minimize(IntVar x);
4 Objective maximize(IntVar x);
5 void schedule(Constraint c);
6 void fixPoint();
7 void onFixPoint(Procedure listener);
8 }

4.2 A Domain Implementation

This section proposes a domain implementation in terms of sparse sets [23]. The implementation
of the domain is rather generic however and other set representations can easily be used instead.

Listing 10 presents the core of the domain implementation in terms of a sparse set. The
constructor creates the sparse set and the domain accessors simply delegate to the sparse set.
The remove method is more interesting: Its role is not only to delegate the removal to the
sparse set but also to notify the domain listener about which domain events are arising due to
the removal. Lines 13–14 test whether the minimum or maximum value is removed, and line 15
delegates the removal to the sparse set. The rest of the method simply places the proper calls on
the domain listener: It calls empty if the domain becomes empty, changeMin and changeMax
if the minimum or maximum values are removed, change if a value is removed, and bind if
there is a single value left in the domain. The remaining methods for value removals can be
implemented similarly.

It remains to present the sparse set implementation which represents subset of numbers
between a lower bound L and an upper bound U . For simplicity, the presentation assumes that
L = 0: It is easy to add a shift factor to deal with the more general case. The sparse set uses two
arrays, values and indices, and an integer size to track how many elements are in the set.
Array values contains a permutation of the values 0..U , while array indices keeps track of
the positions of the elements in array values. In other words, it holds that

values[indices[i]] = i.

Figure 1 depicts the representation of set {0, . . . , 8} after initialization and Figure 2 shows the
representation when values 4 and 6 have been removed. Value 4 is removed by swapping its value
in array values with the last element of the array, updating array indices appropriately,
and decrementing size by one. Removing value 6 amounts to swapping 6 with the last present
element of array values, i.e., 7, and updating the indices and size.
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Listing 10: A Domain Implementation

1 public class SparseSetDomain implements IntDomain {
2 private StateSparseSet spset;
3 public SparseSetDomain(StateManager sm,int min,int max) {
4 spset = new StateSparseSet(sm,max-min+1,min);
5 }
6 public int min() { return spset.min(); }
7 public int max() { return spset.max(); }
8 public int size() { return spset.size(); }
9 public boolean contains(int v) { return spset.contains(v); }

10 public boolean isBound() { return spset.size() == 1; }
11 public void remove(int v, DomainListener l) {
12 if (spset.contains(v)) {
13 boolean maxChanged = max() == v;
14 boolean minChanged = min() == v;
15 spset.remove(v);
16 if (spset.size() == 0) l.empty();
17 l.change();
18 if (maxChanged) l.changeMax();
19 if (minChanged) l.changeMin();
20 if (spset.size() == 1) l.bind();
21 }
22 }
23 public void removeBelow(int value,DomainListener l) {...}
24 public void removeAbove(int value,DomainListener l) {...}
25 public void removeAllBut(int v,DomainListener l)
26 }

indices

Fig. 1: A Sparse set Set of 9 Values at Initialization.

All the elements present in the set are between indices 0 and size-1. Finding out if an
element is in the set takes constant time: It suffices to consult array indices and test whether
its position is smaller than size. Removing a value also takes constant time as highlighted by
the discussion above. Iterating over the elements of the set takes linear time in the number of
elements in the set. Removing all values but v amounts to swapping v with the element in the
first position, updating the entries in indexes to reflect the new positions, and updating size
to 1. Removing all the values below (or above) a given threshold v take time O(|∆|) where ∆ is
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indices

Fig. 2: Sparse set after the removal of values 4 and 6.

the set of removed values: It suffices to apply the remove operation for each value that needs to
be removed.

4.3 The Variable Implementation

Listing 11 presents the implementation of integer variables. The instance variables include a
reference to the solver, a reference to the domain and three stacks of constraints based on the
abstract data type StateStack (See section 5.3 for details on this data structure). Each stack
corresponds to an event type, specifying when the constraints must be scheduled for propagation.
For instance, the onBind stack stores the constraints to be propagated when the variable is
bound.

Lines 29–33 provide accessors to the variable domain, while lines 35–38 present the methods to
remove values from the domain. Lines 40–42 describe methods to link constraints to the variable.
The constructor creates the domain and the constraint stacks.

The remove methods are the most interesting aspect of the variable implementation. They
delegate the removals to the domain, passing a domain listener as parameter. The methods of the
listener are called depending upon what events are arising in the domain, e.g., method empty
is called when the domain is empty and method change when the domain is updated. The
implementation of the domain listener is shown in lines 8–14. Method empty throws an exception,
indicating a failure of the propagation, which will be caught in the search implementation.
The remaining methods simply schedule the relevant constraints for propagation. For instance,
method bind schedules all constraints in the stack onBind.

Example 5 Consider a variable x with domain {1, 2, 3, 4, 5, 6} and the result of an invocation of
the remove(int v) method on value 3. The computation can be summarized as follows.

1. The removal is delegated to its domain (line 35). The domain method receives the value to
remove (3) and the domain listener.

2. The change method of the listener is called (line 11) and consequently all the constraints
present in onDomain container are scheduled for propagation (method scheduleAll span-
ning lines 15–18).

If the initial domain is {3, 4}, the domain would become a singleton {4} and therefore the bind
method of the listener would also be called to propagate the constraint in the onBind container.
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Listing 11: IntVar Implementation

1 public class IntVarImpl implements IntVar {
2 private Solver cp;
3 private IntDomain domain;
4 private StateStack<Constraint> onDomain;
5 private StateStack<Constraint> onBind;
6 private StateStack<Constraint> onBounds;
7

8 private DomainListener domListener = new DomainListener() {
9 public void empty() { throw InconsistencyException.INCONSISTENCY;}

10 public void bind() { scheduleAll(onBind); }
11 public void change() { scheduleAll(onDomain); }
12 public void changeMin() { scheduleAll(onBounds); }
13 public void changeMax() { scheduleAll(onBounds); }
14 };
15 private void scheduleAll(Stack<Constraint> constraints) {
16 for (int i = 0; i < constraints.size(); i++)
17 cp.schedule(constraints.get(i));
18 }
19

20 public IntVarImpl(Solver cp, int min, int max) {
21 if (min > max)
22 throw new InvalidParameterException("empty domain");
23 this.cp = cp;
24 domain = new Domain(cp,min,max);
25 onDomain = new Stack<>(cp);
26 onBind = new Stack<>(cp);
27 onBounds = new Stack<>(cp);
28 }
29 public int min() { return domain.min();}
30 public int max() { return domain.max();}
31 public int size() { return domain.size();}
32 public boolean contains(int v) { return domain.contains(v);}
33 public boolean isBound() { return domain.size() == 1;}
34

35 public void remove(int v) { domain.remove(v, domListener);}
36 public void assign(int v) { domain.removeAllBut(v,domListener);}
37 public void removeBelow(int v) { domain.removeBelow(v,domListener); }
38 public void removeAbove(int v) { domain.removeAbove(v,domListener); }
39

40 public void propagateOnDomainChange(Constraint c) { onDomain.push(c); }
41 public void propagateOnBind(Constraint c) { onBind.push(c); }
42 public void propagateOnBounds(Constraint c) { onBounds.push(c); }
43 }

Finally, if the initial domain D(x) is the singleton {3}, the removal of 3 would make the domain
empty, in which case the empty method of the listener would be called, which will throw an
exception.

Observe how the domain listener modularizes the logic to react to domain events. By changing
or upgrading the domain listener, it is possible to implement advanced features such as views.
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Listing 12: The Class Abstract Constraint

1 public abstract class AbstractConstraint implements Constraint {
2 private final Solver cp;
3 private boolean scheduled = false;
4 private final State<Boolean> active;
5 // Any additional state required to implement the two optimizations.
6 public AbstractConstraint(Solver cp) {
7 this.cp = cp;
8 active = cp.getStateManager().makeStateRef(true);
9 }

10 public void post() {}
11 public void propagate() {}
12 public void setScheduled(boolean scheduled) { this.scheduled = scheduled;}
13 public boolean isScheduled() { return scheduled;}
14 public void setActive(boolean active) { this.active.setValue(active);}
15 public boolean isActive() { return active.value();}
16 }

4.4 The Implementation of Constraints

Constraints implement the interface in Listing 5 and subclass the AbstractConstraint ab-
stract class shown in Listing 12. Class AbstractConstraint factorizes the implementation of
methods that accelerate the fixpoint algorithm: These are discussed in Section 4.5. Subclasses
override the post and propagate methods which are called when constraints are first posted
to the solver and when constraints must be propagated respectively. During calls to post and
propagate, exceptions of type InconsistencyException are raised each time a failure
is encountered (e.g., a variable domain becomes empty). Since filtering algorithms exploit the
semantics of constraints, it is easier to present examples to illustrate the implementation of
constraints.

Example 6 (x ≤ y) Consider the implementation of x ≤ y. The inference rules are

1. max(D(x))← min{max(D(x)),max(D(y)))}
2. min(D(y))← max{min(D(y)),min(D(x)))}

The constraint implementation is given in Listing 13. The post method registers the constraint
and links it to x and y with boundChange events, since no filtering takes place when removing
values in the middle of the domain. The propagate method implements the filtering. Line 16
implements a simple activation optimization. If the constraint trivially holds, i.e., if max(D(x)) ≤
min(D(y)), the constraint is disabled since no filtering will take place in subsequent computations.

Example 7 (x 6= y+ v) Consider the implementation shown in Listing 14 of x 6= y+ v where v is
a constant in Z. The constraint was used in the queens program (Listing 1). The post method
performs a simple case analysis. If either x or y is already bound, it removes the corresponding
value from the domain of the other variable. Otherwise, it links the constraint with the variables
with bind events. The propagate is invoked when one of the variables becomes bound. It
removes the corresponding value from the domain of the other variables or fails if that variable
is bound to that value. Line 24 implements a simple activation optimization. Once the value of
the other unbound variable has been removed the constraint trivially holds and is thus disabled
since no filtering will take place in subsequent computations.
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Listing 13: LessOrEqual Constraint

1 public class LessOrEqual extends AbstractConstraint { // x <= y
2 private final IntVar x,y;
3 public LessOrEqual(IntVar x, IntVar y) {
4 super(x.getSolver());
5 this.x = x;
6 this.y = y;
7 }
8 @Override public void post() {
9 x.propagateOnBoundChange(this);

10 y.propagateOnBoundChange(this);
11 propagate();
12 }
13 @Override public void propagate() {
14 x.removeAbove(y.max());
15 y.removeBelow(x.min());
16 setActive(x.max() > y.min());
17 }
18 }

Listing 14: NotEqual Constraint

1 public class NotEqual extends AbstractConstraint {
2 private final IntVar x, y;
3 private final int v;
4 public NotEqual(IntVar x, IntVar y, int v) { // x != y + v
5 super(x.getSolver());
6 this.x = x; this.y = y; this.v = v;
7 }
8 public NotEqual(IntVar x, IntVar y) { this(x,y,0);}
9 @Override public void post() {

10 if (y.isBound())
11 x.remove(y.min() + v);
12 else if (x.isBound())
13 y.remove(x.min() - v);
14 else {
15 x.propagateOnBind(this);
16 y.propagateOnBind(this);
17 }
18 }
19 @Override public void propagate() {
20 if (y.isBound())
21 x.remove(y.min() + v);
22 else
23 y.remove(x.min() - v);
24 setActive(false);
25 }
26 }

4.5 The Implementation of Constraint Propagation

Class MiniCP in Listing 15 is the core of the constraint propagation and its fixpoint method
implements Algorithm 2. The implementation is organized around a queue of constraints to prop-
agate. Method post posts a constraint and performs constraint propagation. Method fixPoint
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Listing 15: Solver Implementation

1 public class MiniCP implements Solver {
2 private Queue<Constraint> propagationQueue = new ArrayDeque<>();
3 public void post(Constraint c) {
4 c.post();
5 fixPoint();
6 }
7 public void schedule(Constraint c) {
8 if (c.isActive() && !c.isScheduled()) {
9 c.setScheduled(true);

10 propagationQueue.add(c);
11 }
12 }
13 public void fixPoint() {
14 try {
15 while (propagationQueue.size() > 0)
16 propagate(propagationQueue.remove());
17 }
18 catch (InconsistencyException e) { // clear the propagation queue
19 while (propagationQueue.size() > 0)
20 clear(propagationQueue.remove());
21 throw e;
22 }
23 }
24 void onFixPoint(Procedure listener) { /* standard observer pattern implem */}
25 private void propagate(Constraint c) {
26 c.setScheduled(false);
27 if (c.isActive())
28 c.propagate();
29 }
30 private void clear(Constraint c) { c.setScheduled(false);}
31 }

(lines 13–23) pops constraints from the propagation queue and propagates them until the queue
is empty or a failure occurs. In case of a failure, the exception is caught, the queue is emptied,
and the exception is thrown again to communicate it to the search. The propagation makes sure
that a constraint is not pushed in the queue if it is already in it, using the schedule methods of
the constraints. More precisely, method schedule (lines 7–12) checks whether the constraint is
already scheduled and method propagate(Constraint c) (lines 25 to 29) resets the sched-
uled flag before calling the propagation provided that the constraint has not been deactivated.
The flag is also reset in case of failure.

Unlike Algorithm 2, the implementation does not copy the domains of the variables (e.g.,
like in line 5 of Algorithm 2) but modifies them in place. These domains will be restored during
backtracking as discussed in Section 5.2.

5 The Search Implementation

This section describes how to implement Algorithm 3. Observe that Algorithm 3 does not pre-
scribe any search strategy: Different ordering policies for its queue Q lead to distinct search
strategies. The MiniCP implementation is based on depth-first search, which is typical for con-
straint programming and is memory-efficient.
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Listing 16: The State Manager Interface

1 public interface StateManager {
2 int getLevel();
3 void withNewState(Procedure body);
4 void saveState();
5 void restoreState();
6 void restoreStateUntil(int level);
7

8 StateInt makeStateInt(int initValue);
9 StateBool makeStateBool(boolean initValue);

10 }

The main topic of this section is state management, the rest of the implementation being
direct. As mentioned in Section 4.5, constraint propagation in MiniCP updates variable domains
in place. As a result, in a first approximation, the variable domains after each fixpoint represent
the state of the computation. When branching, MiniCP should thus save these domains in order
to restore them in case of a failure so that the next branch is performed on the proper state.
The state management is completely separated from the search itself and encapsulated in a state
manager class. It is also important to mention that the MiniCP implementation exploits the last-
in/first-out nature of depth-first search to optimize state management. Other search explorations
may not benefit from similar optimizations.

The rest of this section is organized as follows. Section 5.1 presents the depth-first search
implementation. Section 5.2 describes the state management and gives two possible implemen-
tations based on copying and trailing. The trailing state management strategy can be viewed
as a optimized lazy implementation of the copying strategy. Section 5.3 revisits the domain
implementation.

5.1 The Depth-First Search Implementation

Listing 17 depicts the implementation of depth-first search2 using the state manager interface
presented in Listing 16. The important method at this stage is method withNewState which,
informally speaking, executes a closure in a new state which is a copy of the current state. The
depth-first search receives as input a state manager and a branching scheme, i.e., a closure that
returns an array of branches when called. Method solve executes the depth-first search with a
new state. Method dfs is the core of the search and is similar to Algorithm 3. It first applies
the branching scheme to obtain an array of branches. If the array is empty, it means, in all the
examples previewed in this paper, that the variables are all bound and the search completes
by notifying that a solution has been found. Otherwise, the search iterates over all branches.
For each of them, it creates a new state, applies the branch, and performs a recursive call. The
searches described in this paper use methods equal and notEqual and it is useful to look
at their implementation as well. Listing 18 depicts the implementation of Method equal. The
method first assigns value v to variable x and then calls the constraint propagation on the solver.
This call is the connection between the search and propagation. Note also that, if the constraint
propagation fails, an exception is caught and the state is restored for the next branch (lines 18–24
in Listing 17).

2 The actual code has additional instructions to gather statistics, but its essence is identical.
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Listing 17: Core DFS Skeleton

1 public class DFSearch {
2 private StateManager sm;
3 private Supplier<Procedure[]> branchingScheme;
4 public DFSearch(StateManager sm,Supplier<Procedure[]> b) {
5 this.sm = sm;branchingScheme = b;
6 }
7 public void solve() {
8 sm.withNewState( () -> {
9 dfs();

10 });
11 }
12 private void dfs() {
13 Procedure[] branches = branchingScheme.call();
14 if (branches.length == 0)
15 notifySolution();
16 else
17 for (b : branches) {
18 sm.withNewState( () -> {
19 try {
20 b.call();
21 dfs();
22 }
23 catch(InconsistencyException e) {}
24 });
25 }
26 }
27 }

Listing 18: The Equal Method

1 public class Factory {
2 ...
3 static public void equal(IntVar x, int v) {
4 x.assign(v);
5 x.getSolver().fixPoint();
6 }
7 ....
8 }

It is worthwhile mentioning one difference between Algorithm 3 and the implementation in
Listing 17. Line 7 of Algorithm 3 is implemented by line 13 in Listing 17. But the implementation
does not manipulate constraints directly. Rather it receives an array of closures that, when called,
will apply these constraints.

5.2 State Specification

The state in MiniCP is represented by classes implementing two interfaces, StateInt and
StateBool, that encapsulate an integer and a Boolean respectively. These state variables are
created by the state manager. For conciseness only StateInt implementation is discussed next.
Listing 19 depicts the StateInt interface which supports setting a new value and accessing
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Listing 19: StateInt

1 public interface StateInt {
2 int setValue(int v);
3 int value();
4 }

Listing 20: StateManager and StateInt Manipulation

1 StateInt a = sm.makeStateInt(7);
2 StateInt b = sm.makeStateInt(13);
3

4 sm.saveState(); // record current state a=7, b=13
5 a.setValue(6)
6 a.setValue(11);
7 sm.saveState(); // record current state a=11 b=13
8 a.setValue(4);
9 b.setValue(9);

10 sm.restoreState(); // now a=11, b=13
11 sm.restoreState(); // now a=7, b=13

the current value. Listing 20 depicts its use and the intended behavior assuming an existing
StateManager sm. The implementation of state managers exploits the fact MiniCP uses a
LIFO strategy in its search procedures, which is obviously the case for depth-first search.

Copying State Management The simplest state-management strategy creates a backup of the
state, saving the values of all the StateInt and StateBool instances for future restoration.
Listing 21 illustrates this implementation. Lines 1–3 show the interface of a backup entry, which
has only one capability: the ability to restore its previous value. The main class, Copier, im-
plements the StateManager interface. Its internal state consists of two containers. First, vari-
able store keeps track of all state objects ever created. Factory methods makeStateInt and
makeStateBool add a reference to any object they create in this container, as shown in lines 38–
42. Second, variable prior contains a stack of states which are saved by method saveState
and restored by method restoreState. Method saveState creates an instance of the nested
class Backup whose constructor saves a copy of every object in the state store. Method restore
of this backup object restores the saved values. Note that the backup object also saves the size of
store since state objects may be created during the search and the proper size must be restored.
The state objects are created by methods makeStateInt and makeStateBool which return
objects of type CopyInt and CopyBool. The code for CopyInt is shown in Listing 22. Its save
method creates a backup entry which is an instance of the nested class CopyIntStateEntry.
Method restore of the nested class exploits the fact that it can refer to the this object of the
encapsulating class.

Trailing State Management Saving all state variables is typically wasteful as only a few state
variables are modified during a propagation step. MiniCP, like most constraint-programming
implementations, uses a technique called trailing to lazily copy the state. In other words, trailing
only copies the variables that are actually modified. The trailing mechanism described in this
section was first implemented in constraint programming by the CHIP system [28,1]. Knuth [13]
attributes the first formulation of trailing and its usage in a backtracking algorithm to Floyd [6].
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Listing 21: The Copier.

1 public interface StateEntry {
2 public void restore();
3 }
4

5 public class Copier implements StateManager {
6 class Backup extends Stack<StateEntry> {
7 private int sz;
8 Backup() {
9 sz = store.size();

10 for (Storage s : store)
11 add(s.save());
12 }
13 void restore() {
14 store.setSize(sz);
15 for (StateEntry se : this)
16 se.restore();
17 }
18 }
19 private Stack<Storage> store;
20 private Stack<Backup> prior;
21 public Copier() {
22 store = new Stack<Storage>();
23 prior = new Stack<Backup>();
24 }
25 @Override public int getLevel() { return prior.size() - 1;}
26 @Override public void saveState() { prior.add(new Backup());}
27 @Override public void restoreState() { prior.pop().restore();}
28 @Override public void restoreStateUntil(int level) {
29 while (getLevel() > level)
30 restoreState();
31 }
32 @Override public void withNewState(Procedure body) {
33 final int level = getLevel();
34 saveState();
35 body.call();
36 while (getLevel() > level) restoreState();
37 }
38 @Override public StateInt makeStateInt(int initValue) {
39 CopyInt s = new CopyInt(initValue);
40 store.add(s);
41 return s;
42 }
43 @Override public StateBool makeStateBool(boolean initValue) {
44 CopyBool s = new CopyBool(initValue);
45 store.add(s);
46 return s;
47 }
48 }

Listings 23 presents an implementation of the trail. Saving a state (method saveState)
simply pushes the current backup on top of the backup stack (prior) (in constant time) and
creates a new empty backup for the next batch of changes. Similarly, restoring the state (method
restoreState) instructs the current backup to restore all changes that were tracked since the
last call to saveState and then reinstates the previous backup from the prior stack. Lazily
saving changes made to the state is the responsibility of the state objects. Those are created
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Listing 22: The CopyInt Representation.

1 public class CopyInt implements Storage, StateInt {
2 class CopyIntStateEntry implements StateEntry {
3 private final int v;
4 public CopyIntStateEntry(int v) { this.v = v;}
5 @Override public void restore() { CopyInt.this.v = v;}
6 }
7 private int v;
8 protected CopyInt(int initial) { v = initial;}
9 @Override public int setValue(int v) { this.v = v;return v;}

10 @Override public int value() { return v;}
11 @Override public String toString() { return String.valueOf(v);}
12 @Override public StateEntry save() { return new CopyIntStateEntry(v);}
13 }

from the factory methods makeStateInt and makeStateBool which return, respectively, an
instance of TrailInt or TrailBool.

Consider the implementation of TrailInt shown in Listing 24. The big difference with the
Copier is that now the saving is lazy as it only happens when modification is performed on
an object and untouched objects are never backed up. The TrailInt class implements the
StateInt interface and is a cousin of CopyInt. Its mutator method setValue is at the core
of the implementation. If the new value differs from the current value, it first trails (i.e., it backs
up) the old value on the trail with an instance of the nested class StateEntryInt and then
modifies its attribute v.

The implementation features a simple optimization that avoids trailing an object again if it
has already been saved in the current backup. This is done by using an integer identifying the
current backup (the magic attribute of the trail) and saving, inside the TrailInt instance,
the magic value when the object is trailed. The magic attribute is incremented every time a
backup is saved and restored.

Figure 3 contrasts the two state management policies implemented by the Copier (left) and
Trailer (right) in MiniCP for the example shown in Listing 20. It is worth noting that the
Trailer avoids creating unnecessary copies for untouched state objects.

5.3 Revisiting the Domain Implementation

The domain of a variable is part of the state and must be saved and restored. So it is necessary
to upgrade the implementation presented previously. The sparse set representation is convenient
for this purpose. Assume that method saveState is called when the domain has size 8. In all
subsequent forward computations, the array will contain a permutation of these 8 values in the
first 8 slots. So, when restoring the state, it suffices to restore the size of the domain. Consider
Figure 3 again and assume that the state was saved before the removal of values 4 and 6. Then a
restoreState operation restores the size to 9 (as it was at the time of the saveState) and
the two removed values are reinserted in the set as expected. The permutation of values is not the
same as when saveState was called but the domain captures the same set of values {0, . . . , 8}.
This is depicted in Figure 4. For this reason, MiniCP simply provides a StateSparsetSet
class which is the same as SparsetSet except that instance variable size is a state variable.

Finally, observe that the sets of constraints stored in variables are also part of the state: Con-
straints can be added (and backtracked over). These sets can be implemented with a StateStack
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Listing 23: Trailer

1 public class Trailer implements StateManager {
2 class Backup extends Stack<StateEntry> {
3 void restore() {
4 for (StateEntry se : this)
5 se.restore();
6 }
7 }
8 private Stack<Backup> prior;
9 private Backup current;

10 private long magic = 0L;
11

12 public Trailer() {
13 prior = new Stack<Backup>();
14 current = new Backup();
15 }
16 public long getMagic() { return magic;}
17 public void pushState(StateEntry entry) { current.push(entry);}
18 @Override public int getLevel() { return prior.size() - 1;}
19 @Override public void saveState() {
20 prior.add(current);
21 current = new Backup();
22 magic++;
23 }
24 @Override public void restoreState() {
25 current.restore();
26 current = prior.pop();
27 magic++;
28 }
29 @Override public void restoreStateUntil(int level) { /* see Copier implem */ }
30 @Override public void withNewState(Procedure body) {
31 final int level = getLevel();
32 saveState();
33 body.call();
34 while (getLevel() > level) restoreState();
35 }
36 @Override public StateInt makeStateInt(int initValue) {
37 return new TrailInt(this,initValue);
38 }
39 @Override public StateBool makeStateBool(boolean initValue) {
40 return new TrailBool(this,initValue);
41 }
42 }

data structure whose implementation can simply use a StateInt to represent the size of the
stack. On backtracking, the correct size, and hence the correct set of constraints, are restored.
The brief implementation is shown in Listing 25.

5.4 Supporting Optimization

The resolution of a Constraint Optimization Problem (COP) reduces to solving a sequence of
constraint satisfaction problems. Without loss of generality, assume that the COP is a minimiza-
tion. The basic idea behind a branch and bound is the following. Given a COP 〈X,D, C, f〉, first
solve the CSP 〈X,D, C〉. As soon as a solution σ is found, evaluate f(σ) to obtain a first primal
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Listing 24: Trailable Integer.

1 public class TrailInt implements StateInt {
2 class StateEntryInt implements StateEntry {
3 private final int v;
4 public StateEntryInt(int v) { this.v = v;}
5 @Override public void restore() { TrailInt.this.v = v;}
6 }
7 private Trailer trail;
8 private int v;
9 private long lastMagic = -1L;

10 protected TrailInt(Trailer trail, int initial) {
11 this.trail = trail;
12 v = initial;
13 lastMagic = trail.getMagic() - 1;
14 }
15 private void trail() {
16 long trailMagic = trail.getMagic();
17 if (lastMagic != trailMagic) {
18 lastMagic = trailMagic;
19 trail.pushState(new StateEntryInt(v));
20 }
21 }
22 @Override public int setValue(int v) {
23 if (v != this.v) {
24 trail();
25 this.v = v;
26 }
27 return this.v;
28 }
29 @Override public int value() { return this.v;}
30 @Override public String toString() { return "" + v;}
31 }

a=11 b=13

level 0

level 1

Backup

Backup

Stack<Backup> prior

StateEntry StateEntry

a=7 b=13
StateEntry StateEntry

a=7

Backup

Backup

Stack<Backup> prior

StateEntry

Backup: current

a=11 b=13
StateEntry StateEntry

Copier Trailer

Fig. 3: Illustration of the differences between Copier and Trailer related to example given in
Listing 20.

bound f1 on the objective function and solve the second CSP 〈X,D, C ∪ {f < f1}〉. Repeat
this process until the kth CSP 〈X,D, C ∪ {f < fk}〉 becomes infeasible. This failure proves the
optimality of the last feasible solution.
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indices

Fig. 4: Sparset Set

Listing 25: The StateStack Implementation

1 public class StateStack<E> {
2 StateInt size;
3 ArrayList<E> stack;
4 public StateStack(StateManager sm) {
5 size = sm.makeStateInt(0);
6 stack = new ArrayList<E>();
7 }
8 public void push(E elem) {
9 int s = size.value();

10 if (stack.size() > s) stack.set(s, elem);
11 else stack.add(elem);
12 size.setValue(size.value() + 1);
13 }
14 public int size() { return size.value(); }
15 public E get(int index) { return stack.get(index); }
16 }

The implementation of MiniCP follows this scheme but with an important difference: It does
not restart the search from scratch. Instead, it continuously tightens the objective f < b, where b
represents the value of the best-found solution at some computation stage. The implementation
is given in Listings 26 and 27 which show how to minimize the value of a variable. Listing
26 presents a class Minimize that implements interface Objective and supports only one
method tighten which is called when the solver finds a solution (see line 16 in Listing 27).
Its implementation simply tightens the best primal bound (i.e., the value of the best solution
found so far) before failing to search for better solutions (lines 8–11). The implementation uses
observers, i.e., closures attached to the search and executed when a solution is found.

It remains to ensure that the variable being minimized has the proper bound at all times.
The bound update cannot be performed only when a new solution is found, since the update
would be undone on backtracking. MiniCP applies the bound update systematically before each
fixpoint (and hence after each branching), using an observer again (line 6 in Listing 26 adds the
bound update to the fixpoint observer).

The extended DFSearch class in Listing 27 adds an optimize method to complement its
solve method. The onSolution method registers listener closures in a solObserver list.
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Listing 26: Minimization Objective

1 public class Minimize implements Objective {
2 public int bound = Integer.MAX_VALUE;
3 private final IntVar x;
4 public Minimize(IntVar x) {
5 this.x = x;
6 x.getSolver().onFixPoint(() -> x.removeAbove(bound));
7 }
8 public void tighten() {
9 if (!x.isBound()) throw new RuntimeException("objective not bound");

10 this.bound = x.max() - 1;
11 throw new InconsistencyException();
12 }
13 }

Listing 27: Refinement for DFSearch.

1 public class DFSearch {
2 private StateManager sm;
3 private Supplier<Procedure[]> branchingScheme;
4 private List<Procedure> solObservers = new LinkedList<Procedure>();
5 public DFSearch(StateManager sm,Supplier<Procedure[]> b) {
6 this.sm = sm;branchingScheme = b;
7 }
8 public void onSolution(Procedure p) { solObservers.add(p);}
9 public void notifySolution() { solObservers.forEach(p -> p.call());}

10 public void solve() {
11 sm.withNewState( () -> {
12 dfs();
13 });
14 }
15 public void optimize(Objective obj) {
16 onSolution(() -> obj.tighten());
17 sm.withNewState( () -> {
18 dfs();
19 });
20 }
21 // as before....
22 }

The notifySolution method simply calls all the closures registered in the solution listener.
Finally, the optimize method is modeled after solve –repeated above for clarity– and simply
registers a solution listener that tightens the primal bound of the objective when a solution is
produced. A similar implementation in the MiniCP class effectively implements the onFixPoint
observer which is triggered as the first step of the fixpoint method of the solver.

6 Advanced Filtering Techniques

This section introduces some more advanced features of MiniCP for constraint propagation. In
particular, this section presents variable views, anonymous constraints, reified constraints, and
global constraints.
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Listing 28: N-Queens model with Views

1 for(int i=0;i < n;i++)
2 for(int j=i+1;j < n;j++) {
3 cp.post(notEqual(q[i],q[j]));
4 cp.post(notEqual(plus(q[i],i),plus(q[j],j)));
5 cp.post(notEqual(minus(q[i],i),minus(q[j],j)));
6 }

6.1 Variable Views

The N-Queens program of Listing 1 states constraints of the form

qi + i 6= qj + j ∧ qi − i 6= qj − j

by using a ternary constraint of signature

public NotEqual(IntVar x, IntVar y, int c)

which holds if x 6= y+ c. The approach of creating many variants of a constraint is motivated by
efficiency considerations. Indeed, it is possible to rewrite each of the above constraints in terms
of binary disequations, e.g.,

qpi = qi + i ∧ qpj = qj + j ∧ qpi 6= qpj ,

by introducing many intermediate variables and constraints. This removes the need for con-
straint variants but may slow down the overall efficiency of the fixpoint algorithm significantly.
Fortunately, there is a third alternative that strikes a good compromise between efficiency and
simplicity: variable views [26].3 A variable view is an IntVar variable that represents an affine
transformation over a given variable. Views in MiniCP are built through the following classes

– IntVarViewMul for c ∗X,
– IntVarViewOffset for X + o and
– IntVarViewOpposite for −X.

which can be composed to obtain affine transformations. The queens model using views is shown
in Listing 28. Methods plus and minus creates views of type IntVarViewOffset, which are
then used in binary disequations.

The implementation of views is illustrated in Listing 29 using class IntVarViewOffset.
Queries on the views are delegated to the view variable after possibly adding or subtracting
the offset. Value removal also delegates to the view variable after having subtracted the offset.
Finally, constraints on the views are attached to the view variable.

6.2 Anonymous Constraints

Sometimes the propagate method of a constraint is so small that it is inconvenient to build an
entire class. MiniCP provides anonymous constraints to address these cases. Variables provide
methods such as whenBind and whenDomainChange that receive as input a closure, create
constraint whose propagate method calls the closure, and link the resulting constraints to the
proper list in the variables.

3 Expressions are a fourth, more general, alternative which was implemented in CHIP, Ilog Solver, and many
subsequent solvers; They require a heavier machinery.
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Listing 29: The Offset View

1 public class IntVarViewOffset implements IntVar {
2 private final IntVar x;
3 private final int o;
4 public IntVarViewOffset(IntVar x, int offset) { // y = x + o
5 this.x = x;
6 this.o = offset;
7 }
8 public Solver getSolver() { return x.getSolver();}
9 public int min() { return x.min() + o;}

10 public int max() { return x.max() + o;}
11 public int size() { return x.size();}
12 public boolean contains(int v) { return x.contains(v - o);}
13 public boolean isBound() { return x.isBound();}
14

15 public void remove(int v) { x.remove(v - o);}
16 public void assign(int v) { x.assign(v - o);}
17 public void removeBelow(int v) { x.removeBelow(v - o);}
18 public void removeAbove(int v) { x.removeAbove(v - o);}
19

20 public void propagateOnDomainChange(Constraint c){ x.propagateOnDomainChange(c)
;}

21 public void propagateOnBind(Constraint c) { x.propagateOnBind(c);}
22 public void propagateOnBounds(Constraint c) { x.propagateOnBounds(c);}
23 }

Listing 30: NotEqual Constraint

1 public class NotEqual extends AbstractConstraint {
2 private final IntVar x, y;
3 private final int v;
4 public NotEqual(IntVar x, IntVar y, int v) { // x != y + v
5 super(x.getSolver());
6 this.x = x; this.y = y; this.v = v;
7 }
8 public NotEqual(IntVar x, IntVar y) { this(x,y,0);}
9 @Override public void post() {

10 if (y.isBound())
11 x.remove(y.min() + v);
12 else if (x.isBound())
13 y.remove(x.min() - v);
14 else {
15 x.whenBind(() -> y.remove(x.min() - v));
16 y.whenBind(() -> x.remove(y.min() + v));
17 }
18 }
19 }

Listing 30 illustrates anonymous constraints for the implementation of the NotEqual con-
straint. The constraint has no propagate method. All its tasks are carried out in method post.
In particular, lines 15–16 specify what happens when variables x or y are bound. Anonymous
constraints are particularly appealing in the sense that they can capture part of the lexical scope,
providing compact implementations of many small constraints. A limitation of anonymous con-
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straints is simultaneous deactivations. Therefore, an implementation with a propagate method
deactivating the constraint when x or y is bound as in Listing 13 is more efficient in this case.

6.3 Reified Constraints

The ability to reason about constraints in constraint-programming systems was introduced in
cc(FD) [30,34]. It is available in most modern systems through reified constraints (also called
indicator constraints in mathematical programming). A reified constraint links a Boolean variable
with the truth value of a constraint (0 is false and 1 is true). For instance, the reified constraint
isEqual(x,v,b) holds if b ≡ (x = v). Its implementation captures the following inference
rules:

when D(b) = 1 then add constraint x = v;
when D(b) = 0 then add constraint x 6= v;
when D(x) = v then add constraint b = 1;
when v /∈ D(x) then add constraint b = 0.

The implementation is given in Listing 31. Notice the dynamic deactivation of the constraint
whenever b or x is bound or whenever v /∈ D(x).

6.4 Global Constraints

Global constraints are a key aspect of constraint programming: They capture combinatorial
substructures that are present in many application and which enjoy fast filtering algorithms.
This section presents three simple examples of global constraints which are used in the QAP
model given in Listing 3: The sum(weightedDist), the element(d,x[i],x[j]) and the
allDifferent(x). Readers interested in global constraints should consult the global constraint
catalog [2] or the surveys [10,11].

The Sum Constraint The sum constraint enforces the relation 0 =
∑n−1

i=0 xi. Enforcing domain
consistency for sum is NP-hard and this section presents an algorithm enforcing bound consis-
tency. The bound-consistent inference rules for sum are:

– max(D(xi))←
∑

j 6=i−min(D(xj))
– min(D(xi))←

∑
j 6=i−max(D(xj))

Computing those rules for every variable takes O(n) per variable and hence O(n2) overall. The
complexity can be reduced to O(n) by precomputing sumMax =

∑
j max(D(xj)) and sumMin =∑

j min(D(xj)). Those precomputed values allow for a O(1) inference rule for each variable:

1. max(D(xi))← min(D(xi))− sumMin
2. min(D(xi))← max(D(xi))− sumMax

In practice, further efficiency can be obtained by exploiting the incremental nature of the filter-
ing process. Indeed, the number of bound variables when going down a branch of the depth-first
search can never decrease. Hence, it is possible to pre-compute incrementally the sum of these
bound variables and to iterate only on free variables. The implementation uses an integer ar-
ray free and a counter nFrees to represent the indices of the variables and the number of
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Listing 31: IsEqual

1 public class IsEqual extends AbstractConstraint { // b <=> x == v
2 private final BoolVar b;
3 private final IntVar x;
4 private final int v;
5

6 public IsEqual(BoolVar b, IntVar x, int v) {
7 super(b.getSolver());
8 this.b = b;
9 this.x = x;

10 this.v = v;
11 }
12 @Override public void post() {
13 propagate();
14 if (isActive()) {
15 x.propagateOnDomainChange(this);
16 b.propagateOnBind(this);
17 }
18 }
19 @Override public void propagate() {
20 if (b.isTrue()) {
21 x.assign(v);
22 setActive(false);
23 } else if (b.isFalse()) {
24 x.remove(v);
25 setActive(false);
26 } else if (x.isBound()) {
27 b.assign(true);
28 setActive(false);
29 } else if (!x.contains(v)) {
30 b.assign(false);
31 setActive(false);
32 }
33 }
34 }

free variables with the following invariants: The first nFrees indices in the array free repre-
sent free variables while the remaining variables are bound. The implementation also maintains
sumFixed, the partial sum of bound variables

sumFixed =
∑

i≥nFrees

xfree[i]

The values sumMax and sumMin can then be computed in O(nf) as follows:

sumMax = sumFixed +
∑

j<nFrees

max(D(xfree[j])

and
sumMin = sumFixed +

∑
j<nFrees

min(D(xfree[j])

Only the free variables are considered for filtering, i.e., ∀i < nFrees :

1. max(D(xfree[j]))← min(D(xfree[j]))− sumMin
2. min(D(xfree[j]))← max(D(xfree[j]))− sumMax
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The complete code is in Listing 32. The time complexity for one call to propagate is Θ(nFrees).
The invariant on array free is maintained by iterating over the free variables from index
nFrees−1 until 0 and in swapping, in O(1) time, any index whose variable is bound with
the last free variable at index nFrees. The value assigned to the bound variable is also added to
sumFixed. The set of bound variables only increases monotonically in a branch: Hence storing
nFrees as a StateInt ensures that the invariant is still valid when backtracking. Obviously,
this is similar to the state representation of sparse sets.

The Element Constraint The element constraint offers the ability of indexing arrays with decision
variables [28,29]. This functionality often avoids the introduction of many binary variables, as well
as arrays of binary variables with many dimensions. This section considers an element constraint
of the form z = dx,y, where d is a two-dimensional array of constants of size n×m and x, y, and z
are variables. Moreover, the proposed implementation achieves domain consistency for variables
x and y and bound consistency for variable z. This corresponds to a frequent case in practice;
The implementation can easily be generalized to enforce domain consistency on all variables.

The implementation first builds a sorted set of tuples 〈i1, j1, v1〉, . . . , 〈ip, jp, vp〉 where v1 ≤
. . . ≤ vp, p = nm, 0 ≤ ik < n, 0 ≤ jk < m, and vk = dik,jj . This sorted set can be computed
once in method post and makes it simple to filter variable z. The implementation scans the
sorted set from below until it finds a tuple 〈im, jm, vm〉 such that im ∈ D(x), jm ∈ D(y), and
v ≥ min(D(z)), producing v as the new lower bound. The new upper bound can be obtained
similarly by iterating from above.

The filtering of variables x and y is slightly more involved. Consider variable x (variable y is
similar). A value i for x may appear in many tuples and it is only when all these tuples cannot
be solutions that value i can be removed from D(x). To implement the filtering efficiently, the
implementation uses a counter cx,i (a StateInt variable) that represents the number of times
value i appears in a possible solution, i.e., a tuple 〈i, j, v〉 such that im ∈ D(x), jm ∈ D(y), and
min(D(z)) ≤ v ≤ max(D(z)). These counters are assigned to m initially, since no processing
takes place in method post.

Method propagate filters all variables in two scans: one from below and one from above.
When iterating from below (the other case is similar), the implementation considers each tuple.
If the tuple 〈i, j, v〉 is a possible solution, the sweep stops and the minimum of variable z is
updated to v. Otherwise, the counters cx,i and cy,j are decremented. If a counter reaches zero,
then the value is removed from the domain of the corresponding variable. To avoid considering a
tuple more than once, the implementation also maintains two indices low and up (represented
by StateInt) to remember where to start the below and above scan of the sorted set of tuples.
The full implementation is given in Listing 33.

The AllDifferent Constraint The allDifferent(x0, . . . , xn−1) constraint ensures that every
variable in {x0, . . . , xn−1} takes a different value. Decomposition into elementary binary con-
straints such as ∀i 6= j : xi 6= xj does not enforce domain consistency globally. For instance, the
decomposition does not detect inconsistency for the domains D(x0) = D(x1) = D(x2) = {1, 2},
which is directly implied by the pigeonhole principle. It is interesting to outline how to imple-
ment consistency on the global constraint to highlight how constraint programming may leverage
combinatorial algorithms.

Detecting feasibility can be achieved by solving a maximum matching problem in the bipartite
value graph G(V1, V2, E) with V1 = {x0, . . . , xn−1} and V2 =

⋃
i∈0..n−1 = D(xi), E = {(i, v) |

v ∈ D(xi)}. The constraint is satisfiable if and only if the maximum matching has cardinality n.
The rest of the presentation assumes that V2 = {0, . . . ,m− 1} without loss of generality.
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Listing 32: Sum

1 public class Sum extends AbstractConstraint {
2 private int[] free;
3 private StateInt nFrees;
4 private StateInt sumFixed;
5 private IntVar [] x;
6 private int[] min,max;
7 private int n;
8

9 public Sum(IntVar [] x) {
10 super(x[0].getSolver());
11 this.x = x;
12 this.n = x.length;
13 min = new int[x.length];
14 max = new int[x.length];
15 nFrees = getSolver().getStateManager().makeStateInt(n);
16 sumFixed = getSolver().getStateManager().makeStateInt(0);
17 free = new int[n];
18 for (int i = 0; i < n; i++)
19 free[i] = i;
20 }
21 @Override public void post() throws InconsistencyException {
22 for (IntVar var: x)
23 var.propagateOnBoundChange(this);
24 propagate();
25 }
26 @Override public void propagate() throws InconsistencyException {
27 // Filter the unbound vars and update the partial sum
28 int nU = nFrees.value();
29 long sumMin = sumFixed.value(), sumMax = sumFixed.value();
30 for (int i = nU - 1; i >= 0; i--) {
31 int idx = free[i];
32 min[idx] = x[idx].min();
33 max[idx] = x[idx].max();
34 sumMin += min[idx]; // Update partial sum
35 sumMax += max[idx];
36 if (x[idx].isBound()) {
37 sumFixed.setValue(sumFixed.value() + x[idx].min());
38 free[i] = free[nU - 1]; // Swap the variables
39 free[nU - 1] = idx;
40 nU--;
41 }
42 }
43 nFrees.setValue(nU);
44 if (sumMin > 0 || sumMax < 0) {
45 throw new InconsistencyException();
46 }
47 for (int i = nU - 1; i >= 0; i--) {
48 int idx = free[i];
49 x[idx].removeAbove(-((int) (sumMin - min[idx])));
50 x[idx].removeBelow(-((int) (sumMax - max[idx])));
51 }
52 }
53 }
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Listing 33: Element 2D

1 public class Element2D extends AbstractConstraint {
2 private final IntVar x, y, z;
3 private final int n, m;
4 private final StateInt[] nRowsSup;
5 private final StateInt[] nColsSup;
6 private final StateInt low,up;
7 private final ArrayList<Triple> tt;
8 private class Triple implements Comparable<Triple> {
9 protected final int x,y,z;

10 private Triple(int x, int y, int z) { this.x = x;this.y = y;this.z = z;}
11 @Override public int compareTo(Triple t) { return z - t.z;}
12 }
13 public Element2D(int[][] d, IntVar x, IntVar y, IntVar z) {
14 super(x.getSolver());
15 this.x = x;this.y = y;this.z = z;
16 n = d.length;m = d[0].length;
17 tt = new ArrayList<Triple>();
18 for (int i = 0; i < d.length; i++)
19 for (int j = 0; j < d[i].length; j++)
20 tt.add(new Triple(i,j,d[i][j]));
21 Collections.sort(tt);
22 StateManager sm = cp.getStateManager();
23 low = sm.makeStateInt(0);
24 up = sm.makeStateInt(tt.size()-1);
25 nColsSup = IntStream.range(0,n).mapToObj(i->sm.makeStateInt(m)).toArray(

StateInt[]::new);
26 nRowsSup = IntStream.range(0,m).mapToObj(i->sm.makeStateInt(n)).toArray(

StateInt[]::new);
27 }
28 @Override public void post() {
29 x.removeBelow(0);x.removeAbove(n-1);
30 y.removeBelow(0);y.removeAbove(m-1);
31 x.propagateOnDomainChange(this);
32 y.propagateOnDomainChange(this);
33 z.propagateOnBoundChange(this);
34 propagate();
35 }
36 private void updateSupports(int lostP) {
37 if (nColsSup[tt.get(lostP).x].decrement() == 0) x.remove(tt.get(lostP).x);
38 if (nRowsSup[tt.get(lostP).y].decrement() == 0) y.remove(tt.get(lostP).y);
39 }
40 @Override public void propagate() {
41 int l = low.getValue(),u = up.getValue(),zMin = z.min(),zMax = z.max();
42 while(tt.get(l).z<zMin||!x.contains(tt.get(l).x)||!y.contains(tt.get(l).y)){
43 updateSupports(l++);
44 if (l > u) throw new InconsistencyException();
45 }
46 while(tt.get(u).z>zMax||!x.contains(tt.get(u).x)||!y.contains(tt.get(u).y)){
47 updateSupports(u--);
48 if (l > u) throw new InconsistencyException();
49 }
50 z.removeBelow(tt.get(l).z);z.removeAbove(tt.get(u).z);
51 low.setValue(l);up.setValue(u);
52 }
53 }



F
in

a
l

F
eb

ru
a
ry

2
0
,

2
0
2
1

MiniCP: A Lightweight Solver for Constraint Programming 37

Filtering the allDifferent constraint amounts to determining whether an edge in the
bipartite graph belongs to some maximum matching. This can be achieved by solving a matching
problem for every edge. Régin [22] however showed that this filtering can be performed in time
linear in the size of the graph. The algorithms is composed of four steps illustrated in Figure 5
and summarized as follows:

1. A maximum-size matching M is computed in the value graph.
2. The residual graph is constructed.
3. The strongly connected components (SCC) are computed in the residual graph.
4. Every edge belonging to some SCC belongs to a maximum matching and edges between SCCs

do not. Hence these edges can be filtered.

A sketch of the implementation is given in Listing 34. The MaximumMatching object is in
charge of computing the maximum matching in the value graph. This object wraps an augmenting
path algorithm. Although the details of the implementation are not given here, this algorithm is
incremental in the following sense: From one call to the next at line 29, it restarts its computation
from the previous matching and needs only as many augmenting steps as the number of deleted
edges. In addition, the matching remains valid upon backtracking. The feasibility test is com-
puted at line 30, throwing an InconsistencyException in case |M | < n. Line 32 updates the
residual graph. Line 33 computes the SCC. e.g, using Tarjan’s or Kosaraju’s algorithm. This com-
putation is hidden in the method GraphUtil.stronglyConnectedComponents(g) where
g is the residual graph. It returns an array associating a SCC identifier with each node of the
graph (i.e., each variable and value). Finally, line 37 removes any value v from the domain of
a variable x if the corresponding edge is not in M and if the SCCs of x and v are different. A
comprehensive discussion of this algorithm can be found in [9].

7 Advanced Search Techniques

This section presents some advanced search techniques. It shows how to implement search limits,
combinators, and large neighborhood search in MiniCP.

7.1 Search Limits

In various circumstances, it is desirable to terminate the search before having found all solutions
or the optimal solution. MiniCP provides a simple abstraction to implement various search
limits, e.g., on the number of solutions, the CPU time, or the number of failures. Method solve
accepts a predicate (a Java closure) which is applied at every node of the search to decide whether
to terminate the search early. For instance, the fragment

solver.solve(stats -> stats.nSolutions == 1);

illustrates how to terminate the search once the first solution has been found. The closure receives
an argument stat (of type SearchStatistics) that collects statistics about the search. In
this example, the boolean predicate simply checks the number of solutions recorded in stat.
The generalized implementation of depth-first search is shown in Listing 35. Line 8 contains the
more general solve call. The DFS search in line 16 receives, as inputs, the statistics object and
the stopping predicate, which are used before branching to determine whether to terminate the
search.
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Listing 34: AllDifferent

1 public class AllDifferentDC extends AbstractConstraint {
2 private IntVar[] x;
3 private final int nVar, maxVal;
4 private int[] match; // for each var the value it is matched to
5 private final MaximumMatching maximumMatching;
6 // residual graph
7 private Graph g = new Graph() { /* ... omitted ... */ };
8

9 public AllDifferentDC(IntVar... x) {
10 super(x[0].getSolver());
11 maximumMatching = new MaximumMatching(x);
12 match = new int[x.length];
13 this.x = x;
14 this.nVar = x.length;
15 }
16 @Override public void post() {
17 for (int i = 0; i < nVar; i++)
18 x[i].propagateOnDomainChange(this);
19 propagate();
20 }
21

22 // update the range of values minVal,maxVal
23 public void updateRange() { /* ... omitted ... */ }
24

25 // update adjacency lists of the residual graph
26 public void updateGraph() {/* ... omitted ... */ }
27

28 @Override public void propagate() {
29 int size = maximumMatching.compute(match); // step1
30 if (size < nVar)
31 throw InconsistencyException.INCONSISTENCY;
32 updateRange(); updateGraph(); // step2
33 int[] scc = GraphUtil.stronglyConnectedComponents(g); // step3
34 for (int i = 0; i < nVar; i++) {
35 for (int v = 0; v <= maxVal; v++)
36 if (match[i] != v && scc[i] != scc[v + nVar])
37 x[i].remove(v); // step4
38 }
39 }

7.2 Search Combinators

Search combinators in MiniCP compose branching schemes to produce more sophisticated
branching schemes. This section illustrates how to build search combinators in MiniCP through
an example.4 Listing 36 shows how to implement search phases, where the search composes sev-
eral branching schemes in sequence. Such a combinator is useful to implement search phases
which are often used to prioritize the assignment of certain variables over others.

Recall that a branching scheme returns an array of branches, which is empty when the scheme
completes. To compose a sequence of branching schemes, it suffices, at each node of search tree,
to iterate over the schemes until one produces a non-empty array of branches. The Sequencer
combinator receives, as input, an array of branching schemes. When called to produce a set of
branches, it iterates over the branching schemes until one produces a non-empty array (lines

4 For more discussion on each combinators, readers can consult [18,32,24].
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Fig. 5: Illustration of the allDifferent constraint. Step 1: nodes contain the variable indices
and values. Step 2: nodes contain canonical id’s in the residual graph. Step 3: component ids are
given in each node and colors represent those ids. Step 4: removed edges are represented with
dashed lines.

8–12). Note the compositional nature of the combinator: The combinator itself is a branching
scheme and it applies to any branching scheme.

Combinators can be composed with generic selectors to specify complex branching schemes
concisely. Consider the implementation of a search procedure that assigns two arrays of variables
a and b in sequence, using the first-fail principle (i.e., the variable with the smallest domain is
assigned first). The high-level specification is as follows:

Listing 37: Using a Sequencer to Express a Two-Phased First-Fail Search.

1 IntVar[] a = ...;
2 IntVar[] b = ...;
3 ...
4 DFSearch dfs = makeDfs(cp,and(firstFail(a), firstFail(b)));

The rest of the implementation is depicted in Listing 38, which provides an excerpt of the
class BranchingScheme. Lines 5–14 define a selector that receives, as inputs, an array x, a
predicate p, and a function f: It selects an element xi of x such that p(xi) holds and f(xi)
is minimal. Lines 16–30 define a search procedure that uses the first-fail principle to assign all
variables in array x. It uses selectMin to find the free variable with the smallest domain and
then branches in the same way as in the prior examples. Note Lines 31–33 that define a factory
method and to create a sequencer combinator.
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Listing 35: Core DFS Skeleton

1 public class DFSearch {
2 private StateManager sm;
3 private Supplier<Procedure[]> branchingScheme;
4 public DFSearch(StateManager sm,Supplier<Procedure[]> b) {
5 this.sm = sm;branchingScheme = b;
6 }
7 public SearchStatistics solve() { return solve(stats -> false);}
8 public void solve(Predicate<SearchStatistics> limit) {
9 SearchStatistics stats = new SearchStatistics();

10 sm.withNewState( () -> {
11 try {
12 dfs(stats,limit);
13 } catch(StopSearch sx) {}
14 });
15 }
16 private void dfs(SearchStatistics stats,Predicate<SearchStatistics> limit) {
17 if (limit(stats))
18 throw new StopSearch();
19 Procedure[] branches = branchingScheme.call();
20 if (branches.length == 0)
21 notifySolution();
22 else
23 for (b : branches) {
24 sm.withNewState( () -> {
25 try {
26 b.call();
27 dfs();
28 }
29 catch(InconsistencyException e) {}
30 });
31 }
32 }
33 }

Listing 36: The Sequencing Combinator

1 import java.util.function.Supplier;
2 public class Sequencer implements Supplier<Procedure[]> {
3 private Supplier<Procedure[]>[] branchingSchemes;
4 public Sequencer(Supplier<Procedure[]>... branchingSchemes) {
5 this.branchingSchemes = branchingSchemes;
6 }
7 @Override public Procedure[] get() {
8 for (int i = 0; i < branchingSchemes.length; i++) {
9 Procedure[] alts = branchingSchemes[i].get();

10 if (alts.length != 0)
11 return alts;
12 }
13 return Selector.EMPTY;
14 }
15 }
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Listing 38: Illustrating Selectors and Combinators

1 public class BranchingScheme {
2

3 [...]
4

5 public static <T,N extends Comparable<N>>
6 T selectMin(T[] x,Predicate<T> p,Function<T,N> f) {
7 T sel = null;
8 for (T xi : x) {
9 if (p.test(xi)) {

10 sel = sel==null || f.apply(xi).compareTo(f.apply(sel)) < 0 ? xi : sel;
11 }
12 }
13 return sel;
14 }
15

16 public static Supplier<Procedure[]> firstFail(IntVar... x) {
17 return () -> {
18 IntVar xs = selectMin(x,
19 xi -> xi.size() > 1,
20 xi -> xi.size());
21 if (xs == null)
22 return EMPTY;
23 else {
24 int v = xs.min();
25 return branch(() -> xs.getSolver().post(equal(xs, v)),
26 () -> xs.getSolver().post(notEqual(xs, v)));
27 }
28 };
29 };
30 }
31 public static Supplier<Procedure[]> and(Supplier<Procedure[]>... choices) {
32 return new Sequencer(choices);
33 }
34 public static final Procedure[] EMPTY = new Procedure[0];
35 public static Procedure[] branch(Procedure... branches) { return branches;}
36 }

7.3 Limited Discrepancy Search

This section presents a combinator for Limited Discrepancy Search (LDS) [7]. LDS assumes that
a reasonably good heuristic is available and explores by trusting the heuristic less and less over
time. It often helps DFS from being stuck in unproductive parts of the search space. LDS explores
the search in waves, allowing the search to differ from the heuristic by up to 0, 1, 2, . . . decisions
in each wave. For instance, Figure 6 displays the leaves explored by LDS with a discrepancy limit
of 2.

The Implementation of LDS in MiniCP is given in Listings 39 and 40. Listing 39 describes a
combinator for implementing a wave, while Listing 40 presents the traditional iterative implemen-
tation of LDS. Any branching scheme can be wrapped into the LDS combinator to create a new
branching scheme. The key is to create new closures from the embedded branching schemes. Each
such closure updates the current discrepancy curD (line 21) before calling the actual branch. The
current discrepancy is then used in line 15 to fail if the discrepancy limit maxD is exceeded. Note
that the nodes explored in a given iteration of Listing 40 may overlap with the ones explored at
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1 2 2 3

0 1 1 2

1 0 1

0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4

0 1 1 2

Fig. 6: Illustration of the nodes explored with a discrepancy limit of 2. The discrepancy is given
in each node. Dashed nodes are pruned.

Listing 39: Limited Discrepancy Branching

1 java.util.function.Supplier;
2 public class LimitedDiscrepancyBranching implements Supplier<Procedure[]> {
3

4 private int curD;
5 private final int maxD;
6 private final Supplier<Procedure[]> bs;
7

8 public LimitedDiscrepancyBranching(Supplier<Procedure[]> bs,int maxDiscrep) {
9 this.bs = bs;

10 this.maxD = maxDiscrep;
11 }
12 @Override public Procedure[] get() {
13 Procedure[] branches = bs.get();
14 int k = Math.min(maxD - curD + 1, branches.length);
15 if (k == 0) return BranchingScheme.EMPTY;
16 Procedure [] branches_k = new Procedure[k];
17 for (int i = 0; i < k; i++) {
18 int bi = i;
19 int d = curD + bi; // branch index
20 branches_k[i] = () -> {
21 curD = d; // update discrepancy
22 branches[bi].call();
23 };
24 }
25 return branches_k;
26 }
27 }

the previous iteration. But this overlap is in general quite limited since most of them are pruned
with the help of the primal bounds produced by the waves.
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Listing 40: Iterative Discrepancy Search

1 Objective obj = cp.minimize(totCost);
2 // Iterative Discrepancy Search
3 for (int dL = 0; dL < x.length; dL++) {
4 DFSearch dfs = makeDfs(cp,limitedDiscrepancy(firstFail(x),dL));
5 dfs.optimize(obj);
6 }

iter 1 obj:28480
best 0 1 2 3 4 6 9 5 8 10 11 7

relaxed * * * 3 * * 9 5 8 * 11 7

iter 2 obj:13456
best 6 4 1 3 0 2 9 5 8 10 11 7

relaxed 6 * 1 3 * * * 5 * * * 7

iter 3 obj:13200
best 6 4 1 3 9 2 0 5 11 10 8 7

relaxed 6 4 * * 9 2 0 5 * 10 * 7

iter 4 obj:10792
best 6 4 3 1 9 2 0 5 11 10 8 7

relaxed 6 * * * 9 * * * 11 10 * *

... ...

Table 2: The first four iterations of LNS on the quadratic assignment problem. At each LNS
iteration, the current best solution and the randomized subspace. Relaxed variables are depicted
with a * symbol.

7.4 Large Neighborhood Search

Large Neighborhood Search (LNS) [27] is an effective search strategy to leverage the strengths
of CP on large-scale applications. Its key idea is to improve an initial solution by fixing some
of its decisions and searching for an improving solution when exploring the remaining search
space. The sub-space exploration (often called a reconstruction phase) is often subject to a CPU
time or failure limits to avoid being stuck. This process is repeated using randomization to select
the subspaces. For instance, the subspace may be defined by fixing the assignments of a subset
of the decision variables, the remaining variables being “relaxed”, i.e., they can be assigned to
any value in their domain. Table 2 highlights this process on the first four iterations of the
quadratic assignment problem. It depicts the vector of decision variables and objective value. At
each iteration, about 50% of the variables are randomly selected to be assigned to their value
in the best-found solution, the other being “relaxed”. CP then tries to improve the current best
solution.

An implementation of LNS in MiniCP is given in Listing 41. Line 1 defines an array xBest
to store the best-found solution. Lines 3–8 updates this array every time a new solution is found.
Lines 10–23 performs nRestarts CP searches. Each such exploration starts by fixing about
50% of the variables to their values in the best-found solution (lines 15–20), before proceeding to
the depth-first search itself. Method optimizeSubjectTo calls withNewState to preserve
the initial state in which none of the variables are fixed. Therefore, at each iteration, this initial
state is restored before starting fixing the selected variables. For completeness’ sake, method
optimizeSubjectTo is shown in Listing 42.
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Listing 41: Large Neighborhood Search

1 int[] xBest = IntStream.range(0,n).toArray();
2

3 dfs.onSolution(() -> {
4 // Update the current best solution
5 for (int i = 0; i < n; i++)
6 xBest[i] = x[i].min();
7 System.out.println("objective:"+objective.min());
8 });
9

10 for (int i = 0; i < nRestarts; i++) {
11 System.out.println("restart number #"+i);
12

13 dfs.optimizeSubjectTo(obj,stats -> stats.nFailures >= failureLimit, () -> {
14 // Assign the fragment 50% of the variables randomly chosen
15 for (int j = 0; j < n; j++) {
16 if (rand.nextInt(100) < 50) {
17 // after the optimizeSubjectTo those constraints are removed
18 Factory.equal(x[j], xBest[j]);
19 }
20 }
21 }
22 );
23 }

Listing 42: Large Neighborhood Search

1 public class DFSearch {
2 // remainder of the class (as before)
3 public void optimizeSubjectTo(Objective obj,Predicate<SearchStatistics> limit,

Procedure subjectTo) {
4 sm.withNewState(() -> {
5 try {
6 subjectTo.call();
7 optimize(obj,limit);
8 } catch (InconsistencyException e) {}
9 });

10 }
11 }

8 Teaching Material and Student Projects

MiniCP comes with a series of more than 20 implementation projects available on https:
//bitbucket.org/minicp/minicp. All the projects can be tested with junit-tests provided
to students. These projects will teach students the material presented in this paper, as well as
more advanced topics. They include

– Trailing and CP solver internal mechanisms by adding new useful functionalities to MiniCP
(views, domain iterators, etc);

– Basic binary, logical, and reified constraints;
– Global constraints: table, element, allDifferent constraints;
– Problem specific and black-box heuristics, including LNS;

https://bitbucket.org/minicp/minicp
https://bitbucket.org/minicp/minicp
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– Modeling good practices (redundant constraints, symmetry breaking, ...);
– Scheduling constraints;
– CP for frequent pattern mining, an emerging topic.

Slides that provide the required background to successfully implement the projects are also
available. At the end of each slide deck, suitable implementation projects are identified. This
material has been already used and tested at the ACP-2017 summer school and in the ING2365
course on CP at UCLouvain. The proposed projects are calibrated to take about 4 hours of
implementation work for 12 weeks. In the future, some quizzes and homeworks will also be
developed. A mini-solver competition was recently organized[3] for solving problems described
by XCSP3 standardized modeling format. MiniCP comes with a parser and interface for the
XCSP3 format to simplify participation. Students found the participation in a competition very
motivating.

9 Conclusion

This paper introduced MiniCP, a light-weight, open-source constraint-programming solver for
educational purposes. Its goal is to stimulate the teaching and research in constraint program-
ming by democratizing access to its core implementation concepts. MiniCP has a minimalist
architecture with a close matching between theoretical and implementation concepts and a focus
on compositionality and extensibility.

MiniCP is a living project already used in practice to teach constraint programming at some
universities and in summer schools. It will continue to evolve and offer new teaching material.
The version described in this paper is 1.0.1. The project welcomes contributions and extensions
under the form of pull requests on the source code, exercises, or as new reference to external
pages. Feedback from Early adopters indicates that MiniCP is also useful for research purposes
as it permits to experiment with new ideas easily in a clean and understandable, yet reasonably
efficient, architecture.
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A Java Closures

Java 1.8 supports the concept of closures (aka first-order functions) which is at the core of functional programming.
The MiniCP solver makes extensive use of closures for more readibility and conciseness. Consider the identity
function λx.x expressed in lambda-calculus. It can be written in Java 1.8 as

Listing 43: An Identity Closure in Java

1 Function<Integer,Integer> r = (Integer x) -> { return x;};
2 for(int i=0;i < 10;i++)
3 System.out.format("f(%d) = %d\n",i, r.apply(i));

The code indicates that Java provides a generic type Function<A,B> to represent a function of type A → B.
and r is used to refer to the identity function. The next two lines show how to apply closure r for various values.
Since this example is somewhat verbose, Java 1.8 offers syntactic sugar to simplify the notation, dropping the
argument type, the block syntax, and the return keyword to obtain

1 Function<Integer,Integer> r = x -> x;

This brings the definition of r close to a lambda calculus definition. Java 1.8 also makes it possible to define
arbitrary closure types through the concept of functional interface. For instance, the snippet

Listing 44: A Procedure first-order function type

1 @FunctionalInterface public interface Procedure {
2 void call();
3 }

defines the type of a closure that takes no input and return no outputs. It just executes a block of code. MiniCP
also makes extensive use of functional interfaces defined in the JDK 1.8. For instance, a branching (closure
returning an array of Procedure) is none other than Supplier<Procedure[]>. Boolean predicates over some
type T (i.e., first-order functions of type T → B use Predicate<T> while first-order functions of type T → N
use Function<T,N>.

B Performance Evaluation

The objective of those experiments is to measure the raw performances of the basic funtionalities offered by a
solver: backtracking and propagation mechanisms, domains, search, etc. Our goal is to measure if, despite its
simplicity, MiniCP achieve reasonable performance when compared to carefully engineered and optimized solvers,
including Choco [21] (version 4.0.2) implemented in Java and OscaR [20] (version 4.0.0) implemented in Scala.
Both [21] and [20] have more than 50K lines of code. The MiniCP version used in the test is 1.0.1. Table 3 was
obtained on a MacBook Pro with a 2.6Ghz 6-Core i7 running macOS Catalina 10.15.1. The Java version used is

Listing 45: Java version used in evaluation

1 $ java --version
2 openjdk 11.0.1 2018-10-16
3 OpenJDK Runtime Environment 18.9 (build 11.0.1+13)
4 OpenJDK 64-Bit Server VM 18.9 (build 11.0.1+13, mixed mode)

Runtime were obtained by using the time command of the operating system as in, for instance:

Listing 46: Example command to run the evaluation (on a UNIX OS).

1 $ time bin/bench -p qap -s minicp

and reporting the wall clock time.
In state-of-the-art solvers, great care is dedicated to the efficient implementation of global constraints. Since

comparing implementations of global constraints is not the purpose of this evaluation, the models used in the
experiments and available here https://zenodo.org/record/3557449 are quite simple and composed of sum,

https://zenodo.org/record/3557449
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nodes mini-cp (sec.) oscar-cp (sec.) choco (sec.)
magic-series 1192 24.5 15.4 30.4

n-queens 49339391 522.1 302.0 303.3
QAP 144846 10.9 5.1 7.6
TSP 4285744 30.3 14.2 22.1

magic-square 3011034 40.0 23.4 22.4

Table 3: Performance comparison with Choco [21] and OscaR [20]. For the QAP, we use table
constraints for modeling the element2D as it is not available natively in Choco.

elements, reification and binary constraints. The experimental evaluation ensures that the same search trees is
explored by all the solvers. The evaluation also forces a sparse-representation of the domains as this is the only
available option in MiniCP in the base implementation.

Table 3 presents the results and running times are given in seconds. The performance of MiniCP is reasonably
good despite its simplicity, flexibility and the fact that we explicitly refrain from optimizing the implementation.
For instance, the code uses Java collections which induce a significant overhead due to object and iterator cre-
ations; An optimized solver such as OscaR or Choco often uses its own array-based collections. Boolean variables
in MiniCP are simply 0/1 integer variables, while OscaR uses a dedicated implementation. OscaR statically
pre-allocates frequently used objects to avoid the dynamic creation of StateEntries. Aside from this lack of
optimization in memory management, the performance difference can be explained by the fact that OscaR and
Choco have a priority system to schedule light constraints before more complex ones. While the default implemen-
tation of MiniCP has no constraint priorities, adding the necessary support is straightforward and un-intrusive.
First, one must add a constant attribute (and an accessor) to each constraint instance to hold onto a priority level
(a value from a discrete subset of integers, e.g., 0 through k where k is the highest priority). Second, the state of
MiniCP solver class (Figure 15) must be upgraded to hold onto a vector of Queue<Constraint>, one for each
discrete priority. Third, when a constraint c is scheduled, it gets added to the propagation queue matching c’s
priority (changes to method schedule of MiniCP. Finally, the fixpoint algorithm (method fixPoint of MiniCP)
must, at each iteration, determine the highest non-empty priority queue and pull the next constraint from there.
Once all queues become empty, the fixpoint is reached and one can break out of the loop.
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