Outline

> The consistency of a constraint (tradeoft filtering vs time)

> The sum constraint
—NP-hardness
—Bound consistency
— ldempotence
— Variable views

> The element constraint
—1D and 2D, on array of constants and array of variables
— Hybrid consistency and domain consistency

Constraints

Remember, a constraint has two responsibilities i

—Check if it is feasible: yes / no / possibly

—Remove infeasible values by an algorithm,
Known as a propagator, filtering algorithm (or constraint)

— But how much can a filtering algorithm remove 7

Constraints

Constraint X = Y+1

Set of solutions for D(X) ={1..9} and D(Y) ={0..8}:

X

HEEEEEEEEE
HUEEEEEENE
ESEEEEEEEN °
ERNUEEEEEE

HERSUEEEEN °
HEEREUEEEN _

ERRRRSEREN &
ERRRRRSUEN °
EEEEEERSEN -
HEEEEEEEREE _

OO MNOLOTM N ™

Domain Consistency (DC): Definition fin

A constraint Cis domain consistent iff each value of the domain of each of its variables
participates in at least one solution to C.

Domain Consistency Domain-Consisteney—2£

D(Y) ﬁ D(Y) ‘
& &

D(X) D(X)

DC Filtering for X = Y+1 o

Remove all the points that do
not participate in a solution to

F.D)y)={veDy |v+1eDx)} the ConzltralnF, given the
X omains.

F D)x)=1ve DK |v-1€D(y)}

2 4567 8 %

-+ N = Ol ~

DC Filtering for X = Y+1 o

Remove all the points that do
not participate in a solution to

F D)x)=1ve DK |v-1€D(y)}

F (D)y)={ve Dy |v+1e D)) the Conzg:;;tr’,fwen the
X :
HEEEEEEEEN
EEEEEE B
- HEEEEPEEEN
HEEERREEEN

- HIHENEENEEE
, IENEEEENEE
B HEEEEE

5 HEEEEEE
1 EEEEEEEE
HEEEEEEEEE

2 45678 Y

DC Filtering for X = Y+1 (Domain Consistent)

public class EqualPlusOneDC extends AbstractConstraint {
IntVar x, vy;

@Override

public void post() {
X .propagateOnDomainChange(this);
y .propagateOnDomainChange(this);
propagate();

}

@override Time complexity: O(| D(x) | + | D(y)|)

public void propagate() {

for (int v = x.min(); v <= x.max(); v++) {
1f (x.contains(v) && !y.contains(v-1)) {
X.remove(v);

}
}

for (int v = y.min(); v <= y.max(); v++) {
if (y.contains(v) && !x.contains(v+1l)) {
y.remove(v);

}

1&mi

Constraints

Bound Consistency (BC): Definition Lo

A constraint Cis bound consistent iff the minimum and maximum of the domain of each
of its variables participate in at least one solution to C, assuming interval domains.

Bound Consistency Be&nel—éeﬁsls!eeney—)(

11

BC Filtering for X = Y+1: Reasoning on the Bounds

F (D)x) ={ve Dx) | min(D(y)) +1 <v <max(D(y)) + 1}
F (D)(y) = {v € D(y) | min(D(x)) — 1 <v < max(D(x)) — 1}

X

HEEEEEERER

e min(X) >= max(min(Y)+1,min(X))
. ========== max(X) <= min(max(Y)+1,max(X))
5 ========== min(Y) >= max(min(X)—1,min(Y))
4 DN max(Y) <= min(max(X)—1,max(Y))

PEEREREEER
M T

L

N
=
&)
o
~
(00
<

BC Filtering for X = Y+1: Reasoning on the Bounds

HEEEEEENEE
HEEEEEPOEN
- L
EEEENASNEE

min(Y) >= max(min(X)—1,min(Y))
max(Y) <= min(max(X)—1,max(Y))

BC Filtering for X = Y+1: Reasoning on the Bounds

X
HEEEEEENEE
BEEEERE B min(X) >= max(min(Y)+1,min(X))
- |l max(X) <= min(max(Y)+1,max(X))
e
; INURANEEEE |)"t T)
HEGEEREEEN ’
5 AEEEEEEN
1 EEEEEEEN
HEEREEERERE

N
=
&)
o
~
o0
<

BC Filtering for X = Y+1: Reasoning on the Bounds

X

7

5
|

-t N

min(X) >= max(min(Y)+1,min(X))
max(X) <= min(max(Y)+1,max(X))

min(Y) >= max(min(X)—1,min(Y))
max(Y) <= min(max(X)—1,max(Y))

BC Filtering for X = Y+1: Reasoning on the Bounds

EEEEEEEEEE
EEEEEENOEE
EEEEENUEEE
EEEEDeSEEE
EEEEEANEEE
, ANERAEEEEE

EEEEEEEEEE

X

Would be removed
by DC filtering

BC Filtering for X = Y+1 (Bound Consistent)

public class EqualPlusOneBC extends AbstractConstraint {

17

IntVar x, v;

@Override

public void post() {
X.propagateOnBoundChange(this);
v . propagateOnBoundChange(this);

propagate();

}

@Override
public void propagate() {

Ve
Ve

X

removeAbove (x.
removeBelow(x.

. removeAbove (V.
.removeBelow (V.

max()-1);
min()-1);

max()+1);
min()+1

) —

°
4

Time complexity: O(1)
if the domain representation enables O(1)
for removeBelow and removeAbove.

O(#removed values) for a sparse set.

’Mini

Filtering Powers

—Bound consistency: reason with the domain bounds only.

—Domain consistency: reason with all the domain values.

> \Which one to prefer? It depends on the application!

— Bound consistency:
» Faster per execution: complexity depends on the number of variables.
* Prunes less: larger search tree.

—Domain consistency:

* Slower per execution: complexity depends on the sizes of the domains.
* Prunes more: smaller search tree.

18

’P‘*ﬂl Tal

Filtering Strength: Discussion

19

Filtering strength

’Mini

Time to explore the tree!

Size of search tree

Hard to predict!

Constraint Programming

Sum Constraint

» Definition:

> Assume X =[{1,}, {0,,3}, {2,4,5,6}] and y = {6}:
— Which values can be removed?

> How difficult is it to remove all the impossible values?

21

COmpleXIty'7 A

> Claim:
—Removing all the impossible values for Sum(x,y) is
> Proof:
— By from subset-sum to removing all the impossible values.

— Subset-sum is an NP-hard problem [https:/en.wikipedia.org/wiki/Subset_sum_problem]:
» Consider an integer set S

* Does any non-empty subset of S sum to 07?
e Example: S={-3,8,-1,-13,5,7} S={-3,8,-31,20,5 X

22

https://en.wikipedia.org/wiki/Subset_sum_problem

Proof £

> Encoding:
— Given a set of non-zero numbers.
— Encode each ai by a variable x; with domain
— Create a variable y with domain
— State the constraint
— all the impossible values for
» Outcomes:
— Vie{l.r}:D(x)={0} = There are non-empty subsets that sum to O.

— die{l..r}:D(x) {0} > , at least one non-empty subset sums to 0.

23

So...

24

What does that mean?

Domain Consistency for Sum

> Achieving domain consistency is hard!

» Because:
—We need to do so at each node of the search tree.

— Each filtering can be very expensive: time exponential in the domain size.
We do not want to do that (as it rarely pays off).

x[0]=0 / \<[O]!=o

x[|]=2/ \[|]!=2 x[0]=/ \[0]!=|
00O

x[2] =/
o

25

’Mini

Constraint Programming

Bound Consistency: Example

» Consider:
—D(Xx1) =[-100..10], D(x2) = [4..6], D(x3) = [20..60]
—Constraint; X1 + X2 +x3=0

> Alternatively: .
— Constraint: X2 + X3 = —X1
—Namely: [4..6] + [20..60] = - [-100..10]

[4..6] + [20..60] = [-10..100]
> Apply filtering:

— So: [24..66] = [-10..100]
= D(—x1) = [-10..100] n [24..66] = [24..66]

—

27

BC Filtering for Sum: x1 + ... + x, =0
> Feasibility check: ©(n) time:)
— Feasibility implies ijmin <0< ijmax
j=1 j=1
> Filtering: ©(n) time for each variable:
ximin — max ximin, Z _)ijaX ximax — min ximax, Z _ xjmin

j=1ij#
> Example:

J=1y#i

[—100..10] + [4..6] + [20..60] =0

—6 + —60 = —66 = X1 =—66
-10+-60 =-70 = x2=2-70
-10+-6=-16 = Xx3=-16

28

—4 + -20=-24 = x1 =24
—(—=100) + 20 =80 = x2 < 80
— (—100) + 4 =96 = X3 <96

’Mini

Bottom line

29

Can we do better?

Improving Runtime for Sum: fn

> |[dea:
—We keep recomputing the sums!
—Make it incremental while scanning the array of variables.

> Steps:
— Precompute in O(n) time:

— Check feasibility in O(1) time:

— Filter in O(1) time per variable:

30

Further Improvements?

> Make it iIncremental with respect to the search-tree traversal.

> \Why?
— As we descend In the search tree, variables become fixed.

— Therefore, we should only loop over the variables that are urifixed.

» \What Is needed?

— Track (during the search) the sum over the fixed variables.
— Track (during the search) which variables are unfixed.

State

— Use two Statelnt for the sum and number of the fixed variables.
— Use a stateful sparse set for the indices to the unfixed variables.
— The state gets restored on backtrack.

31

’Mini

Process

» Check the tree:
— The fixed set grows.

sumFixed Z xjmm
JE€fixed

s sumFixed + Z xjmm
Jé&fixed

st sumFixed + Z xjmax
Jéfixed

32

fixed ={0,2,5} sumFixed = 11

’Mini

fixed = {} sumFixed =0

x[0]=4

fixed = {0} sumFixed =4

fixed = {0} sumFixed =4

x[5]=1

fixed ={0,5} sumFixed =5

Revised Process -

> But a stateful sparse set can only shrink!
—Work with the complement! unFixed ={0,1,2,3,4,5} sumFixed =0

x[0]=4

sumFixed < Z xjmm
JE€fixed

unFixed ={1,2,3,4,5} sumFixed =4

s™N — sumFixed +) X" unFixed ={1,2,3,4,5} sumFixed = 4

Jéfixed
x[5]=1

GMAX i B o] o Z s unFixed ={1,2,3,4} sumFixed =5

Jéfixed

unFixed ={1,3,4} sumFixed = 11

33

Incremental State Update for Sum £

» Statelnt: nFixed =0

» Statelnt: sumFixed = 0

'int nF = nFixed.value();
‘long sumMin = sumFixed.value(), sumMax = sumFixed.value();
for (int 1 = nF; 1 < x.length; 1i++) {

| int idx = fixed[i];
min[idx] = x[1dx].min(); sumMin += min[idx];
| max[idx] = x[idx].max(); sumMax += max[idx];

if (x[1dx].isFixed()) {
sumFixed.setValue(sumFixed.value() + x[i1dx].min());
fixed[i] = fixed[nF]; // Swap the variables
fixed[nF] = 1idx;
nk++;

}
}

nFixed.setValue(nF);

|) , o i , I ,

34

Incremental State Update for Sum £

> Statelnt: nFixed = &

‘int nF = nFixed.value();
‘long sumMin = sumFixed.value(), sumMax = sumFixed.value();
for (int 1 = nF; 1 < x.length; 1i++) {

| int idx = fixed[i];
min[idx] = x[1dx].min(); sumMin += min[idx];
| max[idx] = x[1idx].max(); sumMax += max[idx];
if (x[idx].isFixed()) {

sumFixed.setValue(sumFixed.value() + x[i1dx].min());
fixed[i] = fixed[nF]; // Swap the variables
fixed[nF] = 1idx;
nk++;
}
}

nFixed.setValue(nF);

35

Incremental State Update for Sum £

> Statelnt: nFixed = &

> Statelnt: sumFixed = &

‘int nF = nFixed.value();
‘long sumMin = sumFixed.value(), sumMax = sumFixed.value();
for (int 1 = nF; 1 < x.length; 1i++) {

‘ int idx = fixed[i];
min[idx] = x[1dx].min(); sumMin += min[idx];
| max[idx] = x[idx].max(); sumMax += max[idx];

if (x[idx].isFixed()) {
sumFixed.setValue(sumFixed.value() + x[i1dx].min());
fixed[i] = fixed[nF]; // Swap the variables
fixed[nF] = idx;
nk++;
}
}

nFixed.setValue(nF);

|) , R i , I ,

36

Incremental State Update for Sum

> Statelnt: nFixed = 2

int nF = nFixed.value();
"long sumMin = sumFixed.value(), sumMax = sumFixed.value();
for (int 1 = nF; 1 < x.length; 1i++) {

| int idx = fixed[i];
min[idx] = x[1dx].min(); sumMin += min[idx];
| max[idx] = x[idx].max(); sumMax += max[idx];

if (x[1dx].isFixed()) {
sumFixed.setValue(sumFixed.value() + x[i1dx].min());
fixed[i] = fixed[nF]; // Swap the variables
fixed[nF] = 1idx;
nk++;

}
}

nFixed.setValue(nF);

|) , o i , I ,

37

1QMI

_And on Backtrack?

» Statelnt: nFixed =§ 1
» Statelnt: sumFixed = ‘ﬁ 4

0 3 4

38

3

2

1

6

14

8 9

sm.restoreState() /
sm.restoreState() /

x[5]#2

x[5]=1

’Mini

Filtering Property

ldempotence fin

> A filtering algorithm is idempotent if executing it twice in a row always leads to exactly the
same domains as just one execution: it reaches its own fixpoint in one execution.

» Consider the constraint x; + ... + X, = 0;
— Denote D1 = D(x1), ..., Dn= D(Xn).
— Let be the new domains after BC filtering.

» Question:
_ — N —
— If true, then sumBC /s idempotent.
» Relevance?
— We can avoid extraneous scheduling!

40

Is SumBC |dempotent? £

» Recall the previous example:
—We had the constraint [-100..10] + [4..6] + [20..60] = 0.

> After BC filtering:

—We got [-66..—24] + [4..6] + [20..60] = 0.

> Definition:
— A support Is a value that participates in a solution.
> Insight:

— If one tightens an upper (resp. lower) bound in an interval domain,
then all the other lower (resp. upper) bounds are supports
and need thus not be reconsidered: conditional idempotence.

41

s SumBC |[dempotent?

> |_et us modify the previous example:
— Consider now the constraint {—100,—25,-24,10} + [4..6] + [20..60] = 0.

42

s SumBC [dempotent?

> |_et us modify the previous example:
— Consider now the constraint {—100,—25,-24,10} + [4..6] + [20..60] = 0.

> After BC filtering once:
—We get —66 < {-100,—25,-24,10} < —24
— S0 D(x1) = {-#@8—25,—24, %8}

43

Is SumBC |dempotent? Lo

> |_et us modify the previous example:
— Consider now the constraint {—100,—25,-24,10} + [4..6] + [20..60] = 0.

> After BC filtering once:
—We get —66 < {-100,-25,—24,10} < —24
— S0 D(x1) = {~<#884—25,—24, 48}

> After BC filtering a second time:

—We start from {—25,-24} + [4..6] + [20..60] = 0.
—We have —(-25) + (-20) =5 = X2<5

and —(—25) + (—4) = 21 = X3 < 21

—Hence {—25,-24} + [4..5] + [20..21] = 0.
— S0 SumBC is in general not idempotent, because of holes in the domains.

44

Domain Views

Some (binary) constraints are easy

—Offset: X=Y + 0,
— Opposite: X = -Y,
—Scale: X=a*Y (witha>0)
» We can create for each such small constraint an Object that extends

Constraint in order to implement its filtering.
Quite easy but there are big disadvantages with this architecture.

46

Disadvantages Lo

Those constraints are functional: removing something from the domain of
variable X or Y can directly be reflected on the domain of the other variable.

The fixpoint can take longer to compute because of them.

Example: Assume 2 is deleted from D(X): C3 is first propagated but has
nothing to do, while first propagating C1 would have shortened the fixpoint
computation:

Solver:propagationQueue C3 C4 C2 (1

C3:Y!=Z

47

The idea

A‘ﬂl INi

> Create a view on the Variables that wrap another variable (decorator pattern)

48

IntVarViewMul
Y=a*X
+ X: IntVar
+ a: int

i () IntVarViewOffset
+ getMin(): int V=X 4o
+ remove(v: int): void _
+ propagateOnDomainChange(c: Constraint): void

I IntVarViewOpposite
implements Y =-X

IntVarImpl

+ dom: IntDomain

<<Interface>>
IntVar

+ X: IntVar

+ onDomain: ReversibleStack<Constraint>
+ domListener; DomainListener

Usage

// D(x) = [0..9]

// Yy = =2%xx — 1

// D(Y)= {-19,..,-1}

IntVar y = minus(opposite(mul(makeIntVar(cp,10),2)),1);

assertEquals(y.getMin(),-19);
assertEquals(y.getMax(),-1);
assertFalse(y.contains(10));
y.remove(-19);
assertFalse(y.contains(-19));

49

’Mini

View Implementation (some methods)

public class IntVarViewOffset implements IntVar {

private final IntVar x;
private final int o;

@Override

public int getMin() {
return x.getMin() + o;

I3

@Override

public void propagateOnDomainChange(Constraint c) {
X.propagateOnDomainChange(c);

I3

@Override

public boolean isFixed() {
return x.isFixed();

I3

@Override

public boolean contains(int v) {
return x.contains(v - o);

I3

@Override

public void remove(int v) throws InconsistencyException {
X.remove(v — 0);
I3

} 50

’Mini

Caveat Emptor: The Problem of Views fin

> Almost no filtering can be idempotent when views are allowed in a solver.
> \Why:

— Because views possibly have «holes» in their domains.

— Because there directly is a side effect when updating a variable domain.

» Consider D(x) =[1..4], D(y) = view(2*x) ={2,4,6,8}.
> X+Yy = 5 actually means 3x = 5 (infeasible, but it takes 3 calls to detect it):

— Propagation 1: x £3, y £4, but this will remove 3 from D(x), so we end up with
D(x) =[1..2], D(y) = view(2*x) = {2,4}.

— Propagation 2: 3 <y, but this will remove 1 from D(x), so we end up with
D(x) ={2}, D(y) = view(2*x) = {4}.

— Propagation 3: this is infeasible, as 6 £ 5 £ 6 does not hold.

51

Boolean variables

Boolean Variables

> Boolean variables are important to express logical constraints, such as
(X1Y) & Z

> |deally they should be considered as 0/1 variables.

> et X[] be an array of IntVar, let Y and Z be two IntVar, and we want Z to be
the number of entries in X[] that are larger than Y:

Z=53, (Y <X

This is a Boolean variable but since

it is appearing in a Sum constraint
it should act as a 0/1 variable

53

’Mini

Solution 1: Create a constraint £

> BoolTolnt(B: BoolVar, Y: IntVar)
Y =1ifand only if B =true, and Y = 0 otherwise

> [f you have many Boolean variables involved in some arithmetic constraints
this will slow down considerably the computation of the fixpoint.

54

Solution 2: Extend IntVar -

> A BoolVar Is thus a 0/1 IntVar.
It can be used in any constraint expecting an IntVar (sums, allDiff, etc).

<<Interface>>
BoolVar
+ isTrue(): boolean IntVarViewMul
+ assign(b: bolean): void Y=a*X
+ X: IntVar
\ + a: int
extends

<<Interface>>
IntVar

R IntVarViewOffset
| + getMin(): in Y=X+o
implements + remove(v: int): void :

: uses 7| + propagateOnDomainChange(c: Constraint): void
I naa |

e

BoolVarImpl

I IntVarViewOpposite
implements Y =-X

IntVarImpl

+ dom: IntDomain
+ onDomain: ReversibleStack<Constraint>

+ X: IntVar

+ domListener: DomainListener

55

Solution 2

56

public interface BoolVar extends IntVar {

J**
* Tests if the variable is fixed to true
* @return true if the variable is fixed to true (value 1)
*/

boolean isTrue();

J**
* Tests if the variable is fixed to false
* @return true if the variable is fixed to false (value 0)
*/

boolean isFalse();

J**
* Assigns the variable
@param b the value to assign to this boolean variable
* (@exception InconsistencyException
is thrown i1if the value 1is not in the domain

*
*/

void fix(boolean b);

t/\ini

anlementation

public interface BoolVar extends IntVar {

J**
* Tests if the variable is fixed to true
* @return true if the variable is fixed to true (value 1)
*/

boolean isTrue();

J**
* Tests if the variable is fixed to false
* @return true if the variable is fixed to false (value 0)
*/

boolean isFalse();

J**
Assigns the variable
@param b the value to assign to this boolean variable
@exception InconsistencyException
is thrown if the value 1is not in the domain

*
*/

void fix(boolean b);

S7

public class BoolVarImpl implements BoolVar {

private IntVar binaryVar;

public BoolVarImpl(IntVar binaryVar) {
if (binaryVar.max() > 1 || binaryVar.min() < 0) {
throw new IllegalArgumentException('must be a binary {0,1} variable");
}
this.binaryVar = binaryVar;
}
@Override
public boolean isTrue() {
return min() == 1;

}

@Override
public boolean isFalse() {
return max() == 0;

}

@Override
public int min() {
return binaryVar.min();

}

@Override
public int max() {
return binaryVar.max();

}

@Override
public void fix(int v) {
binaryVar.fix(v);

}

@Override

public void fix(boolean b) {
fix(b 2 1 : 0);

}

’Mini

Quadratic Assignment

Quadratic Assignment Problem (QAP)

Input: Distance between

any two |locations

W3
I Input: Weight between

any two facilities
(e.g., amount of traffic)

Decision:
@ Where to place each facility?

59

’Mini

QAP 1.,

Locations: Facilities;

Problem:
Assign all facilities to different locations

(let x; denote the location of facility), minimizing

2 Dx,.,xj . W’J
i

2D element constraint:

580 2D array indexed by two variables

Quadratic Assignment Model

61

Solver cp = makeSolver();
IntVar[] x makeIntVarArray(cp, h, n);

cp.post(allDifferent(x));

// build the objective function
IntVar[] weightedDist = new IntVar[n * n];
for (int k = 0, 1 = 0; 1 < n; 1++) {

for (int J = 0; J < n; Jj++) {

welightedDist[k] = mul(element(d, x[1], x[3J]1), W[1][]]);
k++;
}
}
IntVar totCost = sum(weightedDist);
Objective obj = cp.minimize(totCost);

’Mini

Element2D(int[][] T, IntVar x, IntVar vy, IntVar z) fin

> TIX]ly] =z

>» How to create an efficient propagator for Element2D?
> We don’t want to create holes in D(z), but holes are fine in D(x) and D(y).

62

2D Element Constraint

t/\ini

TIX]ly] =

1 1 0

] 3 0

~ 2 1 2

2 3 2

4 1 3

® 3 3

o 0 3

3 0 ‘

3 2 ‘

»D(x) ={0,1,2,3} 8 | 2 | 3
9 0 2

>»D(y) ={0,1,2,3} 9 | 1 | 1
9 2 0

>6I43(z) = [1..9] (interval domain) 9 | 2 | 2

Tx]ly] =z

»D(x) ={0,1,2,3}
»D(y) ={0,1,2,3}

>6Assume D(z) =[1..7] (interval domain)
5

o

Z X y

1 1 0
1 3 0
2 1 2
2 3 2
4 1 3
o 3 3
0 0 3
3 0 ‘
3 2 ‘
3 2 3
9 0 2
9 1 1
9 2 0
9 2 2

’Mini

TIx]ly] = z i

Z X y

I 1 0

I 3 0

A 2 1 2

2 3 2

4 1 3

5 3 3

o) 0 3

3 0 ’

3 2 I

>D(x) ={0,1,2,3) 6 |2 |
9 0 2

»D(y) ={0,1,2,3} g ; ;

GE(Z) = [1..7] (interval domain)

i

Tx]ly] =z

»D(x) ={0,1,2,3}
»D(y) ={0,1,2,3}

>6D(z) = [1..7] (interval domain)

Z X y
1 1 0
1 3 0
2 1 2
2 3 2
4 1 3
5 3 3
o 0 3
3 0]
3 2 T
3 2 3
9 0 2
9 1

i/\ini

Tx]ly] =z fan

Z X y

LW WL I INd IO O

»D(x) ={0,1,2,3}
»D(y) ={0,1,2,3}

O | 00|00 |00 |0 | O~ |
OO OW W= W|—

N

N
N

6IBD(z) = [1..7] (interval domain)

OV
—1

Tx]ly] =z

»D(x) ={0,1,2,3}
»D(y) ={0,1,2,3}

>6D(z) = [1..7] (interval domain)
9

Z X y
1 1 0
1 3 0
2 1 2
2 3 2
4 1 3
5 3 3
o 0 3
3 0]
3 2 T
3 2 3

Tx]ly] =z

N

X

y

»D(x) ={0,1,2,3}
»D(y) ={0,1,2,3}

»D(z) =[1..7] (interval domain)
70

LW WL I INd IO O

QO 0 0 O A~ NI |— |

NDNOO0OW—=2T W= W=

W IN = O

Tx]ly] =z

»D(x) ={0,1,2,3}
»D(y) ={0,1,2,3}

»D(z) =[1..7] (interval domain)

N

X

y

QO OO NN — =

O 0CW=2 W2 W|—=

— WWwWwinNIN OO

WINDIN = 1O

— DO = NDW

Tx]ly] =z

»D(x) ={0,1,2,3}
»D(y) ={0,1,2,3}

> IZD(z) = [1..7] (interval domain)

O OB DN |— |

OW =+ W= W|—

W W WNINNO| O

Tx]ly] =z

»D(x) ={0,1,2,3}
»D(y) ={0,4,2,3}
>7I33(z) = [1..6,#4] (interval domain)

WINDIND=1OINdIN O

— NDIO|= N W |

Tx]ly] =z

»D(x) ={0,1,3}
>D(y) =10,2,3}

nf\ssume D(z) = [2..6] (interval domain)

4 1 3
5 3 3
3 0 ‘
3 2 ‘
3 2 3
9 0 2
9 1 1
9 2 0
9 2 2
9 3 1

Tx]ly] =z

»D(x) ={0,1,3}
>D(y) =18,2,3}

»D(z) = [2..6] (Interval domain)

O OO O | O |00 00|

WINDIND=1OINdIN O

— NDIO|= N W |

Tx]ly] =z

»D(x) ={0,1,3}
» Assume D(y) = {2,3}

:Ié)(z) = [2..6] (interval domain)

O OO O | O |00 00|

WINDIND=1OINdIN O

— NDIO|= N W |

Tx]ly] =z

»D(x) ={0,1,3}
>D(y) =12,3}

»D(z) = [2..6] (Interval domain)

O OO O | O |00 00|

WINDIND=1OINdIN O

— NDIO|= N W |

Tx]ly] =z

»D(x) ={0,1,3}

>D(y) =12,3}
:Ié)(z) = [23,4..6] (interval domain)

W | = O

y
0
0
0

O OO O | O |00 00|

WINDIND=1OINdIN O

— NDIO|= N W |

Tix]ly] = z .

L
X

W | = O

O | OO =

=~
-

Why do we only need to restore
these values on backtrack?

79

WINDIND=1OINdIN O

O OO O | O |00 00|
— DO = NDW

Implementation 1/2

public class Element2D extends AbstractConstraint {

private
private
private
private
private

private
private
private

final int[][] T;

final IntVar x, vy, 2;
int n, m;

final StateInt[] rSup;
final StateInt[] cSup;

final StateInt low;
final StateInt up;
final ArrayList<Triple> zxy;

@Override

public void post() {
.. // some init
X .propagateOnDomainChange(this);
v .propagateOnDomainChange(this);
z .propagateOnBoundChange(this);
propagate();

30

W =10

y
0
0
0

H
H
H

O OO O | O |00 00|

WINDIND=1OINdIN O

— DO = NDW

’Mini

private void updateSupports(int lostPos) {
1f (rSup[zxy.get(lostPos).x].decrement() == 0)
X.remove(zxy.get(lostPos).x);
1f (cSup[zxy.get(lostPos).y].decrement() == 0)
y.remove(zxy.get(lostPos).vy);
}
public void propagate() {
int 1 = low.value(), u = up.value();
int zMin = z.min(), zMax = z.max();

while (zxy.get(l).z < zMin ||
!x.contains(zxy.get(1l).x) ||
ly.contains(zxy.get(l).y)) {
updateSupports(l++);
if (1 > u) throw new InconsistencyException();

}

z.removeBelow(zxy.get(l).z);
low.setValue(l);
// similarly for up

81

’Mini

We decrement the support
counters as we only remove values.

The state manager will take care to
restore everything.

Set the low value to the first
consistent entry in the table.

The state manager will restore it
on backtrack.

1D Element Constraint

Element1D Domain Consistency

Tly]=z, D(y)={0,1,2,3,4,5}, D(2)={3,4,5}

83

o NN

T

3

D(z)

4

S

3

S

4

3

’Mini

Element1D Domain Consistency fi

Tly]=z, D(y)={0,1,2,3,4,5}, assume D(z)={3,4,5}

r 3 4 5 5 4 3

84

Element1D Domain Consistency

Tlyl=z, D(y)={6,1,2,3,4,5}, D(2)={3,4,5}

D(y)

85

Filtering: T[i] ¢ D(z) = D(y) « D(y) \{i}

’Mini

Element1D Domain Consistency fi

> T[y]=z, assume D(y)={$,2,3,4} ,D(z)={4,5},

D(y)
T 5 5
For each value v in D(z), set

ZSup zSup(v) + | {iin D(y) : T[i] = v }|

Filtering: zSup(v) =0 = D(z) « D(z) \ { v}

86

Element1D Domain Consistency

> T[y]=z, assume D(y)={$,2,3,4} ,D(z)={4,5},

D(y)
.

87

Filtering: T[i] ¢ D(z) = D(y) « D(y) \{i}

For each value v in D(z), set
zSup(v) < [{iin D(y) : T[i] = v } |
Filtering: zSup(v) =0 = D(z) « D(z) \ { v}

’Mini

Implementation and Time Complexity T[y]=z

For each value 1 in D(y):
T[] ¢ D(z) = D(y) < D(y) \{1}

supports =}
For each value i in D(y):

For each value v in D(2): supports = supports u {T[il}
zSup(v) < 1{iin D(y) : T[i] = v } |

For each value v in D(2):
zSup(v) =0 = D(z) « D(z) \{ v}

If v not in supports:
D(z) < D(z) \{ v}

38

Element Application

Stable Matching £

Inputs, say for internships:

GOUS[Q — Every company provides a
ranking of all the students.
— Every student provides a

ranking of all the
companies.

..Il

1T
[
5

Companies

Stable Matching o

> A matching of student Halle with IBM is stable if:

— If IBM prefers another student, say George, over Halle,
then George must prefer his matched company over IBM.

— If student Halle prefers another company, say NASA, over IBM,
then NASA must prefer their matched student over Halle.

> These stability rules make a matching stable!

91

More precisely 1
> |nput:

e (Given are n students and n companies, where each student (resp. company)

has ranked each company (resp. student) with a unigue number between 1 and n

in order of preference (the lower the number, the higher the preference),
say for summer internships.

> Problem:

e Match the students and companies such that there is no pair of a student and a company
who would both prefer to be matched with each other than with their actually matched ones.

92

Input/Output

93

George Google
Clive NASA
Halle SAP

Keira IBM

IBM prefers Keira over Clive (1 vs 2) (smaller number is higher preference).
But Keira prefers her matched company (SAP) over IBM (2 vs 4).

rankStudents|c,s] rankCompanies[s,c]

%ﬁni@

Difficult Problem? £

Not really:

function stableMatching {
Initialize all m €E M and w € W to free
while d free man m who still has a woman w to propose to {
= first woman on m’s list to whom m has not yet proposed
i1f w 1s free
(m, w) become engaged
else some palr (m', w) already exists

if w prefers m to m'

m' becomes free

(m, w) become engaged
else

(m', w) remain engaged

94

https://en.wikipedia.org/wiki/David_Gale
https://en.wikipedia.org/wiki/Lloyd_Shapley

Stable Matchirlg

Data and variables| rankCompanies[Halle,Google] IS
the ranking of Google in Halle’s preferences

\

enum Students = {Geo¥ge,Halle,Keira,Clive};
enum Companies = ogle,IBM,NASA,SAP} ;

int rankCompanies|[Students,Companies];

int rankStudents[Companies,Students];

var {Companies} company|[Students];
var {Students} student[Companies];

rankStudents[Google,Halle] IS
the ranking of Halle in the preferences of Google

.

95

Stable Matching fon

solve {
forall (s in Students)
student[company[s]] = s;
forall (¢ in Companies)
company [student[c]]

Il
Q

96

Stable Matching

97

solve {

forall (s in Students) s
student[company[s]] = s;
forall (¢ in Companies)

s prefers c over their company

company [student[c]] = c; N
forall(s in Students, c in Companies) Aﬁfififi:

A

--

=> rankStudents[c,student[c]] < rankStudents]|c, s];
forall (¢ in Companies, s in Students)

rankStudents|[c,s] < rankStudents|[c,student|c]]

=> rankCompanies|[s,company[s]] < rankStudents|s,c];

Stable Matching o

solve {
forall (s in Students)
student[company[s]] = s;
forall (¢ in Companies) r
company[student[ec]] = c; c prefers their student over s

forall (s in Students, ¢ in Companies)
rankCompanies|[s,c] < rankCompanies|[s, company[s] |4~

=> (.’E ankStudents[c,student[c]] < rankStudents[c,s];;
forall (¢ in Companies, s in Students)
rankStudents|[c,s] < rankStudents|[c,student|c]]

=> rankCompanies|[s,company[s]] < rankStudents[s,c];

98

Stable Matching

99

enum Students = {George,Halle,Keira,Clive};
enum Companies = {Google,IBM,NASA,SAP};

int rankCompanies[Students,Companies];

int rankStudents[Companies, Students];

var{Companies} company[Students];
var {Students} student[Companies];

solve {
SELEHLL (S S Bl non-standard Element constraints T[y]=z
student[company[s]] = s; ! .
. : because T Is an array of variables
forall (¢ in Companies)
company |[student[c]] = c;

forall (s in Students, ¢ in Companies)
rankCompanies|[s,c] < rankCompanies[s,company|[s]]
=> rankStudents|[c,student|[c]] < rankStudents|c, s];
forall (¢ in Companies, s in Students)
rankStudents|[c,s] < rankStudents|[c,student|c]]
=> rankCompanies|[s,company[s]] < rankStudents|[s,c];

logical constraints

’Mini

Stable Matching fon

> Two interesting features:

— Element constraint over an array of variables:
useful in many applications.

— Logical combination of constraints.
> The Element constraint:
— ADility to index an array/matrix with a variable or an expression containing variables.

> Logical combination of constraints:
— Can be handled by reification, for instance.

100

Element Constraint

Element1DVar Constraint

> Tly]=z

public ElementlDVar(IntVarl[] T, IntVar y, IntVar z)
>» How to propagate efficiently?
> Two possibilities:

— Domain consistency

— Relaxed (aka hybrid) domain consistency

* assume interval domains for z and all T[i], and enforce bound consistency for them
* enforce domain consistency fory

102

’Mini

Element1DVar: Relaxed Domain Consistency

> Tlyl=z , IEEEEE -
~T =[{1,3},[1..2],{1,9},{1,2,6)] Z T
—Yy = {Ov1 ’3}
—Z = {4,6,7} -

—What can we remove and how?

103

’Mini

Element1DVar: Relaxed Domain Consistency

>T[y]=z y 0 1 > 3
~T =[{1,3}.[1..2].{1,9}.{1,2,6}] R
—Y = {051 ’3}

—z2={4,6,7}

»Step 0: Relax T and z: interval domains
— T =[[1..3],[1..2],[1..9],[1..6]]

—Yy = {051 53}
-z =1[4..7]

— N OV) SAN @) o ~ oo O N

104

Element1DVar: Relaxed Domain Consistency

> Tlyl=z
~T=[{1,3},[1..2],{1,9},{1,2,6}]
—y ={0,1,3)
—Z = {4,6,7}

»Step 1: Filter (from T and zto) y
~T =[[1..3],[1..2],[1..9],[1..6]]
—y ={0,1,3)
—Z = [47]

vieD(y):
D(T[i]) N D(z) =2 = D(y) < D(y) \{i}

105

’Mini

Element1DVar: Relaxed Domain Consistency

T[O] T[]

> Tlyl=2 |
_T = [{1,3},[1..2],4{1,9}.{1,2,6)] Z

—Y= {Ov1 ’3}
-2 ={4,6,7}

> Step 2: Filter (from T and y to) z
~T=[[1..3],[1..2],[1..9],[1..6]]

106

2

T[2]

T[3]

’Mini

Element1DVar: Relaxed Domain Consistency

> Tlyl=2 |
~T=[{1,3},[1..2],{1,9},{1,2,6}]
-y ={0,1,3}
— 7 = {4,6,7}

> Step 3: Filter (fromzand y to) T
~T =1[[1..3],[1..2],[1..9],[4..6]]
_y={3)
— 7/ = [46]

ID(y)I=1 = T[y]=z (equality constraint)

The domain of a variable T[i] can only be filtered under that condition

107

’Mini

Element1DVar: Relaxed Domain Consistency i

Not
> Tly]=z y e I e e
7 T[O] T[1] T[2] T[3]

—Now assume T = [{1,3},[1..2],{1,9},{1,2,5}] | B
-y ={0,1,3}

-2 ={4,6,7}

— Notice that this constraint is infeasible
— But we do not detect it

108

Element Constraint

Element1DVar: Domain Consistency

>T[y]=Z Y ??
- T =1[{1,6},[1..2],{1,9},{1,2,6}]
-y ={0,1,2,3}
-z ={4,6,7}

» Step 1: Filter (from T and z) to y
- T =1[{1,6},[1..2],{1,9},{1,2,6}]
-y ={0,1,2,3}
-2 ={4,6,7}

vieD(y):
D(T[i]) n D(z) =@ = D(y) < D(y) \{i}

Can be quite slow to compute:
110 Efficient intersection with sparse-set domains?

T2] T[3]

’Mini

DC Filtering: residue = support caching

> vieD(y):
D(T[i]) nD(z) =2 = D(y) < D(y) \i}

> [f we find for a value ieD(y) some value v such that veD(T[i]) and veD(z)
then remember it (caching). Let us call it supportT]i].

> There is a high chance that, on the next propagation, this value is still
preventing the removal D(y) <« D(y) \{i}.

But if supportT[i] ¢ D(T][i]), then one needs to look for a new support,
If not possibly perform D(y) « D(y) \{i}.

> (O(1) check if the support is still valid, else O(ID(T[i])I).

111

Element1DVar: Domain Consistency i

> Tlyl=2 T
~T = [{1,6},[1..2]{1,9},{1,2,6} : —
-y ={0,1,2,3} ‘ I
-z ={4,6,7} - =SSR suppostl
»Step 1: Filter (fromTand z)toy ﬁ
~T = [{1,6},[1..2],{1,9},{1,2,6)] j

-y ={0,1,2,3}
-2 ={4,6,7}

vieD(y):
D(T[i]) n D(z) =@ = D(y) < D(y) \{i}

Can be quite slow to compute:

112 efficient intersection with sparse-set domains?

Element1DVar: Domain Consistency

>T[y]=Z Y ??
- T =1[{1,6},[1..2],{1,9},{1,2,6}]
-y ={0,1,2,3}
-z ={4,6,7}

> Step 2: Filter (from T and y) to z
- T =1[{1,6},[1..2],{1,9},{1,2,6}]

—Y = {053}
-2 ={4,6,7}

vveD(z):
AieD(y): v € D(T[i]) = D(z) « D(z) \{v}

Can be quite slow to compute:
113 need to scan possibly the whole domain of y for each value v

T2] T[3]

’Mini

DC Filtering: Support caching

> vveD(z):
AieD(y): v € D(T[i]) = D(z) « D(z) \{v}

> Again, the same caching idea: assume v cannot be removed.
Then we can store an index | such that v e D(T][i]): call it support_z[v].

> There is a high chance that, on the next propagate, v € D(T[support_z|[v])]),
and in this case we cannot remove v from D(z).

» Otherwise, look for a new support.
> O(1) check if the support is still valid, else O(ID(y)l).

114

Element1DVar: Domain Consistency i

>T[y]=z T
= [{1,6},[1..2],{1,9},{1,2,6}] I
-y ={0,1,2,3}

-2 ={4,6,7}
> Step 2: Filter (from T and y) to z
= [{1,6},[1..2],{1,9},{1,2,6]]

— N W s~ OO OO N 0 O

-y ={0,3} ---
—z={4,6,7}
> support_z[6]=0
‘v’veD():

?ﬂleD(y) v e D(TMI]) = D(z) < D(z) \{v;

115

Element1DVar: Domain Consistency i

> Ty]=z 7 Y ????
- T =1[{1,6},[1..2],{1,9},{1,2,6}]
-y ={0,1,2,3}
-z ={4,6,7}

» Step 3: Filter (fromzandy)to T
- T =1[{1,6},[1..2],{1,9},{1,2,6}]

—Y= {0’3}
— 2z = {6}

— N W s~ OO OO N 0 O

116

Remark about Caching 1

> Those cached supports remain valid on backtrack (no need for reversibles)
because a support for the constraint in a node of the search tree is also a
support for the ancestors of that node: do you see why?

117

Logical Constraints

IsLessOrEqual

119

public class IsLessOrEqual extends AbstractConstraint { // b <=> x <= v

private final BoolVar b;
private final IntVar x;
private final int v;

@Override
public void post() {
if (b.isTrue()) {
X .removeAbove (V) ;
} else if (b.isFalse()) {
X .removeBelow(v + 1);
} else 1if (x.max() <= v) {

b.fix(1);
} else if (x.min() > v) {
b.fix(0);
} else {
b.whenFixed(() -> {
// should deactivate the constraint as it is entailed
if (b.isTrue()) {

X .removeAbove (V) ;

} else {
X.removeBelow(v + 1);
}
})i
X .whenBoundChange(() -> {
if (x.max() <= v) {
// should deactivate the constraint as it 1is entailed
b.fix(1);
} else if (x.min() > v) {
// should deactivate the constraint as it is entailed
b.fix(0);
}
}) i

’kﬂni

enum Students = {George,Halle,Keira,Clive};
enum Companies = {Google,IBM,NASA,SAP};

int rankCompanies[Students,Companies];

int rankStudents[Companies, Students];

var {Companies} company|[Students];
var {Students} student[Companies];

solve {
forall (s in Students)
student[company[s]] = s;
forall (c in Companies)
company [student[c]] = c;

forall (s in Students, ¢ in Companies)

=> rankStudents[c,student|[c]] < rankStudents|c,s];

forall (c in Companies, s in Students)
rankStudents[c,s] < rankStudents|[c,student|[c]]

=> rankCompanies|[s,company[s]] < rankStudents|s,c];

Logical Constraints

» How to implement cp.postix >y =w<2z)?

» Easy: (X > y) can be reified b1: BoolVar = x>y
Same for: (w < z) can be reified b2: BoolVar =w <z

b1 = b2 = (b1 orb2) = (1-b1)+b2 = 1 (views, sum, etc) = b1 < b2

> [n order to make it even more general, we have

public void post(BoolVar b) throws InconsistencyException {

b.fix(true);
fixPoint();

}

>1'Iz'ohis way you can post arbitrary logical expressions in MiniCP

’Mini

