
Outline

1

‣The consistency of a constraint (tradeoff filtering vs time)
‣The sum constraint

– NP-hardness
– Bound consistency
– Idempotence
– Variable views

‣The element constraint
– 1D and 2D, on array of constants and array of variables
– Hybrid consistency and domain consistency

Constraints
Consistency notions

Remember, a constraint has two responsibilities

3

– Check if it is feasible: yes / no / possibly
– Remove infeasible values by an algorithm, 

known as a propagator, filtering algorithm (or constraint)

– But how much can a filtering algorithm remove 🤔?

Constraints
Domain Consistency

Constraint X = Y+1

5

Set of solutions for D(X) = {1..9} and D(Y) = {0..8}:

1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8
9

0

X

Y

Domain Consistency (DC): Definition

6

A constraint C is domain consistent iff each value of the domain of each of its variables
participates in at least one solution to C.

D(X)

D(Y)

Domain Consistency ✅

C

C

D(X)

D(Y)

Domain Consistency ❌

C

C

No support

DC Filtering for X = Y+1

7 2 4 6 7 8

1
2

4
5

7

X

Y

ℱc(D)(x) = {v ∈ D(x) ∣ v − 1 ∈ D(y)}

ℱc(D)(y) = {v ∈ D(y) ∣ v + 1 ∈ D(x)}

5

Remove all the points that do
not participate in a solution to

the constraint, given the
domains.X

Y

DC Filtering for X = Y+1

8 2 4 6 7 8

1
2

4
5

7

X

Y

ℱc(D)(x) = {v ∈ D(x) ∣ v − 1 ∈ D(y)}

ℱc(D)(y) = {v ∈ D(y) ∣ v + 1 ∈ D(x)}

5

Remove all the points that do
not participate in a solution to

the constraint, given the
domains.X

Y

DC Filtering for X = Y+1 (Domain Consistent)

9

public class EqualPlusOneDC extends AbstractConstraint {

 IntVar x, y;

 @Override
 public void post() {
 x.propagateOnDomainChange(this);
 y.propagateOnDomainChange(this);
 propagate();
 }

 @Override
 public void propagate() {
 // propagate from x to y
 for (int v = x.min(); v <= x.max(); v++) {
 if (x.contains(v) && !y.contains(v-1)) {
 x.remove(v);
 }
 }
 // propagate from y to x
 for (int v = y.min(); v <= y.max(); v++) {
 if (y.contains(v) && !x.contains(v+1)) {
 y.remove(v);
 }
 }
 }
}

Time complexity: O(|D(x) | + |D(y) |)

Constraints
Bound Consistency

Bound Consistency (BC): Definition

11

A constraint C is bound consistent iff the minimum and maximum of the domain of each
of its variables participate in at least one solution to C, assuming interval domains.

D(X)

D(Y)
C

Bound Consistency ✅ Bound Consistency ❌

D(X)

D(Y)
C

No supportC C

BC Filtering for X = Y+1: Reasoning on the Bounds

ℱc(D)(x) = {v ∈ D(x) ∣ min(D(y)) + 1 ≤ v ≤ max(D(y)) + 1}
ℱc(D)(y) = {v ∈ D(y) ∣ min(D(x)) − 1 ≤ v ≤ max(D(x)) − 1}

2 4 6 7 8

1
2

4
5

7

X

Y

min(X) >= max(min(Y)+1,min(X))
max(X) <= min(max(Y)+1,max(X))

min(Y) >= max(min(X)–1,min(Y))
max(Y) <= min(max(X)–1,max(Y))

5

X

Y

BC Filtering for X = Y+1: Reasoning on the Bounds

2 4 6 7 8

1
2

4
5

7

X

Y

min(X) >= max(min(Y)+1,min(X))
max(X) <= min(max(Y)+1,max(X))

min(Y) >= max(min(X)–1,min(Y))
max(Y) <= min(max(X)–1,max(Y))

5

X

Y

BC Filtering for X = Y+1: Reasoning on the Bounds

2 4 6 7 8

1
2

4
5

7

X

Y

min(X) >= max(min(Y)+1,min(X))
max(X) <= min(max(Y)+1,max(X))

min(Y) >= max(min(X)–1,min(Y))
max(Y) <= min(max(X)–1,max(Y))

5

X

Y

BC Filtering for X = Y+1: Reasoning on the Bounds

2 4 6 7 8

1
2

4
5

7

X

Y

min(X) >= max(min(Y)+1,min(X))
max(X) <= min(max(Y)+1,max(X))

min(Y) >= max(min(X)–1,min(Y))
max(Y) <= min(max(X)–1,max(Y))

5

X

Y

BC Filtering for X = Y+1: Reasoning on the Bounds

2 4 6 7 8

1
2

4
5

7

X

Y5

X

Y
Would be removed

by DC filtering

BC Filtering for X = Y+1 (Bound Consistent)

17

public class EqualPlusOneBC extends AbstractConstraint {

 IntVar x, y;

 @Override
 public void post() {
 x.propagateOnBoundChange(this);
 y.propagateOnBoundChange(this);
 propagate();
 }

 @Override
 public void propagate() {
 // propagate from x to y
 y.removeAbove(x.max()-1);
 y.removeBelow(x.min()-1);
 // propagate from y to x
 x.removeAbove(y.max()+1);
 x.removeBelow(y.min()+1);
 }
}

Time complexity:
if the domain representation enables  
for removeBelow and removeAbove. 
 
O(#removed values) for a sparse set.

O(1)
O(1)

Filtering Powers

18

– Bound consistency: reason with the domain bounds only.
– Domain consistency: reason with all the domain values.

‣Which one to prefer? It depends on the application!
– Bound consistency:

• Faster per execution: complexity depends on the number of variables.
• Prunes less: larger search tree.

– Domain consistency:
• Slower per execution: complexity depends on the sizes of the domains.
• Prunes more: smaller search tree.

Filtering Strength: Discussion

19

Strong Filtering

But Slower

Weak Filtering

But Faster

Filtering strength

Size of search tree

Time to explore the tree?

?

Hard to predict!

Constraint Programming
Sum Constraint and Domain Consistency

Sum Constraint

21

‣Definition:

‣Assume x = [{1,3}, {0,2,3}, {2,4,5,6}] and y = {6}:
– Which values can be removed?

‣How difficult is it to remove all the impossible values?

∑
i

xi = y ≡ Sum(IntVar[] x, IntVar y)

Complexity?

22

‣Claim:
– Removing all the impossible values for Sum(x,y) is NP-hard.

‣Proof:
– By reduction from subset-sum to removing all the impossible values.
– Subset-sum is an NP-hard problem [https://en.wikipedia.org/wiki/Subset_sum_problem]:

• Consider an integer set S of non-zero numbers.
• Does any non-empty subset of S sum to 0?
• Example: S = {–3 , 8 , –1 , –13 , 5 , 7} ✅ S = {–3 , 8 , –31 , 20 , 5} ❌

https://en.wikipedia.org/wiki/Subset_sum_problem

Proof

23

‣Encoding:
– Given a set S = { a1, …, ar } of non-zero numbers.
– Encode each ai by a variable xi with domain D(xi) = { 0, ai }.
– Create a variable y with domain D(y) = { 0 }.
– State the constraint Sum(x,y).
– Filter all the impossible values for Sum(x,y).

‣Outcomes:
– ∀ i ∈ {1..r} : D(xi) = {0} ➔ There are NO non-empty subsets that sum to 0.
– ∃ i ∈ {1..r} : D(xi) ≠ {0} ➔ YES, at least one non-empty subset sums to 0.

So…

24

What does that mean?

Domain Consistency for Sum

25

‣Achieving domain consistency is hard!
‣Because:

– We need to do so at each node of the search tree.
– Each filtering can be very expensive: time exponential in the domain size. 

We do not want to do that (as it rarely pays off).

x[0]=0

x[1]!=2

x[0]!=0

x[0]=1 x[0]!=1

x[2]=3

x[1]=2

Constraint Programming
Sum Constraint and Bound Consistency

Bound Consistency: Example

27

‣Consider:
– D(x1) = [–100..10], D(x2) = [4..6], D(x3) = [20..60]
– Constraint: x1 + x2 + x3 = 0

‣Alternatively:
– Constraint: x2 + x3 = –x1

– Namely: [4..6] + [20..60] = – [–100..10] 
[4..6] + [20..60] = [–10..100]

‣Apply filtering:
– So: [24..66] = [–10..100]  

⇒ D(–x1) = [–10..100] ⋂ [24..66] = [24..66] 
⇒ D(x1) = [–66..–24]

z

BC Filtering for Sum: x1 + … + xn = 0

28

‣Feasibility check: Θ(n) time:
– Feasibility implies

‣Filtering: Θ(n) time for each variable:

‣Example:

n

∑
j=1

xmin
j ≤ 0 ≤

n

∑
j=1

xmax
j

xmax
i ← min xmax

i ,
n

∑
j=1:j≠i

− xmin
jxmin

i ← max xmin
i ,

n

∑
j=1:j≠i

− xmax
j

[–100..10] + [4..6] + [20..60] = 0
–6 + –60 = –66 ⇒ x1 ≥ –66 –4 + –20 = –24 ⇒ x1 ≤ –24

–10 + –60 = –70 ⇒ x2 ≥ –70 – (–100) + –20 = 80 ⇒ x2 ≤ 80

–10 + –6 = –16 ⇒ x3 ≥ –16 – (–100) + –4 = 96 ⇒ x3 ≤ 96

Bottom line

29

Θ(n2) time for all the n variables:
Can we do better?

Improving Runtime for Sum: x1 + … + xn = 0

30

‣ Idea:
– We keep recomputing the sums!
– Make it incremental while scanning the array of variables.

‣Steps:
– Precompute in O(n) time:

– Check feasibility in O(1) time:

– Filter in O(1) time per variable:

smin ←
n

∑
j=1

xmin
j smax ←

n

∑
j=1

xmax
j

smin ≤ 0 ≤ smax

xmin
i ← max(xmin

i , − smax + xmax
i)

xmax
i ← min(xmax

i , − smin + xmin
i)

Further Improvements?

31

‣Make it incremental with respect to the search-tree traversal.
‣Why?

– As we descend in the search tree, variables become fixed.
– Therefore, we should only loop over the variables that are unfixed.

‣What is needed?
– Track (during the search) the sum over the fixed variables.
– Track (during the search) which variables are unfixed.

‣State tracking:
– Use two StateInt for the sum and number of the fixed variables.
– Use a stateful sparse set for the indices to the unfixed variables.
– The state gets restored on backtrack.

x[0]=4

x[5] ≠ 2

x[5]=1

x[2]=6

Process

32

‣Check the tree:
– The fixed set grows. fixed = {} sumFixed = 0

x[2]=6

fixed = {0,2,5} sumFixed = 11

x[5]=1

fixed = {0,5} sumFixed = 5

sumFixed ← ∑
j∈fixed

xmin
j

x[5] ≠ 2

fixed = {0} sumFixed = 4

x[0]=4

fixed = {0} sumFixed = 4

smin ← sumFixed + ∑
j∉fixed

xmin
j

smax ← sumFixed + ∑
j∉fixed

xmax
j

Revised Process

33

‣But a stateful sparse set can only shrink!
– Work with the complement! unFixed = {0,1,2,3,4,5} sumFixed = 0

x[2]=6

unFixed = {1,3,4} sumFixed = 11

x[5]=1

unFixed = {1,2,3,4} sumFixed = 5

x[5] ≠ 2

unFixed = {1,2,3,4,5} sumFixed = 4

x[0]=4

unFixed = {1,2,3,4,5} sumFixed = 4sumFixed ← ∑
j∈fixed

xmin
j

smin ← sumFixed + ∑
j∉fixed

xmin
j

smax ← sumFixed + ∑
j∉fixed

xmax
j

Incremental State Update for Sum

34

‣StateInt: nFixed = 0

‣StateInt: sumFixed = 0

x[2]=6

x[5]=1

x[5]!=2

x[0]=4

0 1 2 3 4 5 6 7 8 9

∑ j ∈ fixed xjmin

int nF = nFixed.value();
long sumMin = sumFixed.value(), sumMax = sumFixed.value();
for (int i = nF; i < x.length; i++) {
 int idx = fixed[i];
 min[idx] = x[idx].min(); sumMin += min[idx];
 max[idx] = x[idx].max(); sumMax += max[idx];
 if (x[idx].isFixed()) {
 sumFixed.setValue(sumFixed.value() + x[idx].min());
 fixed[i] = fixed[nF]; // Swap the variables
 fixed[nF] = idx;
 nF++;
 }
}
nFixed.setValue(nF);

Incremental State Update for Sum

35

‣StateInt: nFixed = 0

‣StateInt: sumFixed = 0 x[0]=4

0 1 2 3 4 5 6 7 8 9

i

1
4

int nF = nFixed.value();
long sumMin = sumFixed.value(), sumMax = sumFixed.value();
for (int i = nF; i < x.length; i++) {
 int idx = fixed[i];
 min[idx] = x[idx].min(); sumMin += min[idx];
 max[idx] = x[idx].max(); sumMax += max[idx];
 if (x[idx].isFixed()) {
 sumFixed.setValue(sumFixed.value() + x[idx].min());
 fixed[i] = fixed[nF]; // Swap the variables
 fixed[nF] = idx;
 nF++;
 }
}
nFixed.setValue(nF);

Incremental State Update for Sum

36

‣StateInt: nFixed = 1

‣StateInt: sumFixed = 4

x[5]=1

x[5]≠2

x[0]=4

0 1 2 3 4 5 6 7 8 9

i

2
5

int nF = nFixed.value();
long sumMin = sumFixed.value(), sumMax = sumFixed.value();
for (int i = nF; i < x.length; i++) {
 int idx = fixed[i];
 min[idx] = x[idx].min(); sumMin += min[idx];
 max[idx] = x[idx].max(); sumMax += max[idx];
 if (x[idx].isFixed()) {
 sumFixed.setValue(sumFixed.value() + x[idx].min());
 fixed[i] = fixed[nF]; // Swap the variables
 fixed[nF] = idx;
 nF++;
 }
}
nFixed.setValue(nF);

Incremental State Update for Sum

37

‣ StateInt: nFixed = 2

‣ StateInt: sumFixed = 5

x[4]=6

x[5]=1

x[5] ≠ 2

x[0]=4

5 2 3 4 6 710

i

3
11

int nF = nFixed.value();
long sumMin = sumFixed.value(), sumMax = sumFixed.value();
for (int i = nF; i < x.length; i++) {
 int idx = fixed[i];
 min[idx] = x[idx].min(); sumMin += min[idx];
 max[idx] = x[idx].max(); sumMax += max[idx];
 if (x[idx].isFixed()) {
 sumFixed.setValue(sumFixed.value() + x[idx].min());
 fixed[i] = fixed[nF]; // Swap the variables
 fixed[nF] = idx;
 nF++;
 }
}
nFixed.setValue(nF);

8 9

And on Backtrack?

38

‣StateInt: nFixed = 3

‣StateInt: sumFixed = 11

x[4]=6

x[5]=1

x[5]≠2

x[0]=4

95 73 2 864 10

sm.restoreState()

sm.restoreState()

1
4

Filtering Property
Idempotence

Idempotence

40

‣A filtering algorithm is idempotent if executing it twice in a row always leads to exactly the
same domains as just one execution: it reaches its own fixpoint in one execution.

‣Consider the constraint x1 + … + xn = 0:

– Denote D1 = D(x1), …, Dn = D(xn).

– Let [D’1,…,D’n] = SumBC(D1,…,Dn) be the new domains after BC filtering.

‣Question:
– SumBC(D1,…,Dn) =?= SumBC(D’1,…,D’n)
– If true, then sumBC is idempotent.
‣ Relevance?

– We can avoid extraneous scheduling!

Is SumBC Idempotent?

41

‣Recall the previous example:
– We had the constraint [–100..10] + [4..6] + [20..60] = 0.

‣After BC filtering:

– We got [–66..–24] + [4..6] + [20..60] = 0.

‣Definition:
– A support is a value that participates in a solution.

‣ Insight:
– If one tightens an upper (resp. lower) bound in an interval domain, 

then all the other lower (resp. upper) bounds are supports 
and need thus not be reconsidered: conditional idempotence.

4 and 20 are supports for –24

6 and 60 are supports for –66

Is SumBC Idempotent?

42

‣Let us modify the previous example:
– Consider now the constraint {–100,–25,–24,10} + [4..6] + [20..60] = 0.

Is SumBC Idempotent?

43

‣Let us modify the previous example:
– Consider now the constraint {–100,–25,–24,10} + [4..6] + [20..60] = 0.

‣After BC filtering once:
– We get –66 ≤ {–100,–25,–24,10} ≤ –24
– So D(x1) = {–100,–25,–24,10}

Is SumBC Idempotent?

44

‣Let us modify the previous example:
– Consider now the constraint {–100,–25,–24,10} + [4..6] + [20..60] = 0.

‣After BC filtering once:
– We get –66 ≤ {–100,–25,–24,10} ≤ –24
– So D(x1) = {–100,–25,–24,10}

‣After BC filtering a second time:
– We start from {–25,–24} + [4..6] + [20..60] = 0.
– We have –(–25) + (–20) = 5 ⇒ x2 ≤ 5 

and –(–25) + (–4) = 21 ⇒ x3 ≤ 21

– Hence {–25,–24} + [4..5] + [20..21] = 0.
– So SumBC is in general not idempotent, because of holes in the domains.

Domain Views

Some (binary) constraints are easy

46

– Offset: X = Y + o,
– Opposite: X = –Y,
– Scale: X = a * Y (with a > 0)

‣We can create for each such small constraint an Object that extends
Constraint in order to implement its filtering. 
Quite easy but there are big disadvantages with this architecture.

Disadvantages

47

Those constraints are functional: removing something from the domain of
variable X or Y can directly be reflected on the domain of the other variable.
The fixpoint can take longer to compute because of them.
Example: Assume 2 is deleted from D(X): C3 is first propagated but has
nothing to do, while first propagating C1 would have shortened the fixpoint
computation:

C3Solver:propagationQueue C4 C2 C1

D(X)={1,2}
D(Y)={3,4}
D(Z)={3,5}

C1: Y=X+2

C3: Y!=Z

C2
C4

The idea

48

‣Create a view on the Variables that wrap another variable (decorator pattern)

Usage

49

// D(x) = [0..9]
// y = -2*x - 1
// D(y)= {-19,…,-1}
IntVar y = minus(opposite(mul(makeIntVar(cp,10),2)),1);

assertEquals(y.getMin(),-19);
assertEquals(y.getMax(),-1);
assertFalse(y.contains(10));
y.remove(-19);
assertFalse(y.contains(-19));

-1 - *2 *2{0,…,9}

View Implementation (some methods)

50

public class IntVarViewOffset implements IntVar {

 private final IntVar x;
 private final int o;

@Override
public int getMin() {
 return x.getMin() + o;
}

@Override
public void propagateOnDomainChange(Constraint c) {
 x.propagateOnDomainChange(c);
}

@Override
public boolean isFixed() {
 return x.isFixed();
}

@Override
public boolean contains(int v) {
 return x.contains(v - o);
}

@Override
public void remove(int v) throws InconsistencyException {
 x.remove(v - o);
}

}

Caveat Emptor: The Problem of Views

51

‣Almost no filtering can be idempotent when views are allowed in a solver.
‣Why:

– Because views possibly have «holes» in their domains.
– Because there directly is a side effect when updating a variable domain.

‣Consider D(x) = [1..4], D(y) = view(2*x) = {2,4,6,8}.
‣x+y = 5 actually means 3x = 5 (infeasible, but it takes 3 calls to detect it):

– Propagation 1: x ≤ 3 , y ≤ 4, but this will remove 3 from D(x), so we end up with  
D(x) = [1..2], D(y) = view(2*x) = {2,4}.

– Propagation 2: 3 ≤ y, but this will remove 1 from D(x), so we end up with  
D(x) = {2}, D(y) = view(2*x) = {4}.

– Propagation 3: this is infeasible, as 6 ≤ 5 ≤ 6 does not hold.

Boolean variables

Boolean Variables

53

‣Boolean variables are important to express logical constraints, such as
(X | Y) & Z

‣ Ideally they should be considered as 0/1 variables.
‣Let X[] be an array of IntVar, let Y and Z be two IntVar, and we want Z to be

the number of entries in X[] that are larger than Y:
Z = ∑i (Y < X[i])

This is a Boolean variable but since
it is appearing in a Sum constraint

it should act as a 0/1 variable

Solution 1: Create a constraint

54

‣BoolToInt(B: BoolVar, Y: IntVar) 
Y = 1 if and only if B = true, and Y = 0 otherwise
‣ If you have many Boolean variables involved in some arithmetic constraints

this will slow down considerably the computation of the fixpoint.

Solution 2: Extend IntVar

55

‣A BoolVar is thus a 0/1 IntVar. 
It can be used in any constraint expecting an IntVar (sums, allDiff, etc).

uses

Solution 2

56

public interface BoolVar extends IntVar {

 /**
 * Tests if the variable is fixed to true
 * @return true if the variable is fixed to true (value 1)
 */
 boolean isTrue();

 /**
 * Tests if the variable is fixed to false
 * @return true if the variable is fixed to false (value 0)
 */
 boolean isFalse();

 /**
 * Assigns the variable
 * @param b the value to assign to this boolean variable
 * @exception InconsistencyException
 * is thrown if the value is not in the domain
 */
 void fix(boolean b);

}

Implementation

57

public class BoolVarImpl implements BoolVar {

 private IntVar binaryVar;

 public BoolVarImpl(IntVar binaryVar) {
 if (binaryVar.max() > 1 || binaryVar.min() < 0) {
 throw new IllegalArgumentException("must be a binary {0,1} variable");
 }
 this.binaryVar = binaryVar;
 }

@Override
public boolean isTrue() {
 return min() == 1;
}

@Override
public boolean isFalse() {
 return max() == 0;
}

@Override
public int min() {
 return binaryVar.min();
}

@Override
public int max() {
 return binaryVar.max();
}

@Override
public void fix(int v) {
 binaryVar.fix(v);
}

@Override
public void fix(boolean b) {
 fix(b ? 1 : 0);
}

}

public interface BoolVar extends IntVar {

 /**
 * Tests if the variable is fixed to true
 * @return true if the variable is fixed to true (value 1)
 */
 boolean isTrue();

 /**
 * Tests if the variable is fixed to false
 * @return true if the variable is fixed to false (value 0)
 */
 boolean isFalse();

 /**
 * Assigns the variable
 * @param b the value to assign to this boolean variable
 * @exception InconsistencyException
 * is thrown if the value is not in the domain
 */
 void fix(boolean b);

}

Quadratic Assignment
Element Constraints

Quadratic Assignment Problem (QAP)

59

Locations: Facilities:

1

2

4

5

3

1 3 4 52

D2,5

Decision:
Where to place each facility?

Input: Distance between
any two locations

Input: Weight between
any two facilities

(e.g., amount of traffic)

W1,3

QAP

60

Locations: Facilities:

1

2

4

5

3

1 3 4 52

D2,5 * W1,3 W1,3

Problem:
Assign all facilities to different locations
(let denote the location of facility), minimizing xi i

1

3

2D element constraint:
2D array indexed by two variables

∑
i,j

Dxi,xj
⋅ Wi,j

Quadratic Assignment Model

61

Solver cp = makeSolver();
IntVar[] x = makeIntVarArray(cp, n, n);

cp.post(allDifferent(x));

// build the objective function
IntVar[] weightedDist = new IntVar[n * n];
for (int k = 0, i = 0; i < n; i++) {
 for (int j = 0; j < n; j++) {
 weightedDist[k] = mul(element(d, x[i], x[j]), w[i][j]);
 k++;
 }
}
IntVar totCost = sum(weightedDist);
Objective obj = cp.minimize(totCost); Dxi,xj

⋅ Wi,j

Element2D(int[][] T, IntVar x, IntVar y, IntVar z)

62

‣T[x][y] = z

‣How to create an efficient propagator for Element2D?
‣We don’t want to create holes in D(z), but holes are fine in D(x) and D(y).

0 1 2 3

0 1 8 9 6

1 1 9 2 4

2 9 8 9 8

3 1 9 2 5

x

y

2D Element Constraint

T[x][y] = z

64

‣D(x) = {0,1,2,3}

‣D(y) = {0,1,2,3}

‣D(z) = [1..9] (interval domain)

x

y

z x y
1 0 0
1 1 0
1 3 0
2 1 2
2 3 2
4 1 3
5 3 3
6 0 3
8 0 1
8 2 1
8 2 3
9 0 2
9 1 1
9 2 0
9 2 2
9 3 1

0 1 2 3 rSup

0 1 8 9 6 4

1 1 9 2 4 4

2 9 8 9 8 4

3 1 9 2 5 4

cSup 4 4 4 4

sorted

low

up

T[x][y] = z

65

‣D(x) = {0,1,2,3}

‣D(y) = {0,1,2,3}

‣Assume D(z) = [1..7] (interval domain)

x

y

z x y
1 0 0
1 1 0
1 3 0
2 1 2
2 3 2
4 1 3
5 3 3
6 0 3
8 0 1
8 2 1
8 2 3
9 0 2
9 1 1
9 2 0
9 2 2
9 3 1

0 1 2 3 rSup

0 1 8 9 6 4

1 1 9 2 4 4

2 9 8 9 8 4

3 1 9 2 5 4

cSup 4 4 4 4

low

up

T[x][y] = z

66

‣D(x) = {0,1,2,3}

‣D(y) = {0,1,2,3}

‣D(z) = [1..7] (interval domain)

x

y

z x y
1 0 0
1 1 0
1 3 0
2 1 2
2 3 2
4 1 3
5 3 3
6 0 3
8 0 1
8 2 1
8 2 3
9 0 2
9 1 1
9 2 0
9 2 2
9 3 1

0 1 2 3 rSup

0 1 8 9 6 4

1 1 9 2 4 4

2 9 8 9 8 4

3 1 9 2 5 3

cSup 4 3 4 4

low

up

T[x][y] = z

67

‣D(x) = {0,1,2,3}

‣D(y) = {0,1,2,3}

‣D(z) = [1..7] (interval domain)

x

y

z x y
1 0 0
1 1 0
1 3 0
2 1 2
2 3 2
4 1 3
5 3 3
6 0 3
8 0 1
8 2 1
8 2 3
9 0 2
9 1 1
9 2 0
9 2 2
9 3 1

0 1 2 3 rSup

0 1 8 9 6 4

1 1 9 2 4 4

2 9 8 9 8 3

3 1 9 2 5 3

cSup 4 3 3 4

low

up

T[x][y] = z

68

‣D(x) = {0,1,2,3}

‣D(y) = {0,1,2,3}

‣D(z) = [1..7] (interval domain)

x

y

z x y
1 0 0
1 1 0
1 3 0
2 1 2
2 3 2
4 1 3
5 3 3
6 0 3
8 0 1
8 2 1
8 2 3
9 0 2
9 1 1
9 2 0
9 2 2
9 3 1

0 1 2 3 rSup

0 1 8 9 6 4

1 1 9 2 4 4

2 9 8 9 8 2

3 1 9 2 5 3

cSup 3 3 3 4

low

up

T[x][y] = z

69

‣D(x) = {0,1,2,3}

‣D(y) = {0,1,2,3}

‣D(z) = [1..7] (interval domain)

x

y

z x y
1 0 0
1 1 0
1 3 0
2 1 2
2 3 2
4 1 3
5 3 3
6 0 3
8 0 1
8 2 1
8 2 3
9 0 2
9 1 1
9 2 0
9 2 2
9 3 1

0 1 2 3 rSup

0 1 8 9 6 4

1 1 9 2 4 3

2 9 8 9 8 2

3 1 9 2 5 3

cSup 3 2 3 4

low

up

T[x][y] = z

70

‣D(x) = {0,1,2,3}

‣D(y) = {0,1,2,3}

‣D(z) = [1..7] (interval domain)

x

y

z x y
1 0 0
1 1 0
1 3 0
2 1 2
2 3 2
4 1 3
5 3 3
6 0 3
8 0 1
8 2 1
8 2 3
9 0 2
9 1 1
9 2 0
9 2 2
9 3 1

0 1 2 3 rSup

0 1 8 9 6 3

1 1 9 2 4 3

2 9 8 9 8 2

3 1 9 2 5 3

cSup 3 2 2 4

low

up

T[x][y] = z

71

‣D(x) = {0,1,2,3}

‣D(y) = {0,1,2,3}

‣D(z) = [1..7] (interval domain)

x

y

z x y
1 0 0
1 1 0
1 3 0
2 1 2
2 3 2
4 1 3
5 3 3
6 0 3
8 0 1
8 2 1
8 2 3
9 0 2
9 1 1
9 2 0
9 2 2
9 3 1

0 1 2 3 rSup

0 1 8 9 6 3

1 1 9 2 4 3

2 9 8 9 8 1

3 1 9 2 5 3

cSup 3 2 2 3

low

up

T[x][y] = z

72

‣D(x) = {0,1,2,3}

‣D(y) = {0,1,2,3}

‣D(z) = [1..7] (interval domain)

x

y

z x y
1 0 0
1 1 0
1 3 0
2 1 2
2 3 2
4 1 3
5 3 3
6 0 3
8 0 1
8 2 1
8 2 3
9 0 2
9 1 1
9 2 0
9 2 2
9 3 1

0 1 2 3 rSup

0 1 8 9 6 3

1 1 9 2 4 3

2 9 8 9 8 0

3 1 9 2 5 3

cSup 3 1 2 3

low

up

T[x][y] = z

73

‣D(x) = {0,1,2,3}

‣D(y) = {0,1,2,3}

‣D(z) = [1..6,7] (interval domain)

x

y

z x y
1 0 0
1 1 0
1 3 0
2 1 2
2 3 2
4 1 3
5 3 3
6 0 3
8 0 1
8 2 1
8 2 3
9 0 2
9 1 1
9 2 0
9 2 2
9 3 1

0 1 2 3 rSup

0 1 8 9 6 2

1 1 9 2 4 3

2 9 8 9 8 0

3 1 9 2 5 3

cSup 3 0 2 3

low

up

T[x][y] = z

74

‣D(x) = {0,1,3}

‣D(y) = {0,2,3}

‣Assume D(z) = [2..6] (interval domain)

x

y

z x y
1 0 0
1 1 0
1 3 0
2 1 2
2 3 2
4 1 3
5 3 3
6 0 3
8 0 1
8 2 1
8 2 3
9 0 2
9 1 1
9 2 0
9 2 2
9 3 1

0 1 2 3 rSup

0 1 8 9 6 2

1 1 9 2 4 3

2 9 8 9 8 0

3 1 9 2 5 3

cSup 3 0 2 3

low

up

T[x][y] = z

75

‣D(x) = {0,1,3}

‣D(y) = {0,2,3}

‣D(z) = [2..6] (interval domain)

x

y

z x y
1 0 0
1 1 0
1 3 0
2 1 2
2 3 2
4 1 3
5 3 3
6 0 3
8 0 1
8 2 1
8 2 3
9 0 2
9 1 1
9 2 0
9 2 2
9 3 1

0 1 2 3 rSup

0 1 8 9 6 1

1 1 9 2 4 2

2 9 8 9 8 0

3 1 9 2 5 2

cSup 0 0 2 3

low

up

T[x][y] = z

76

‣D(x) = {0,1,3}

‣Assume D(y) = {2,3}

‣D(z) = [2..6] (interval domain)

x

y

z x y
1 0 0
1 1 0
1 3 0
2 1 2
2 3 2
4 1 3
5 3 3
6 0 3
8 0 1
8 2 1
8 2 3
9 0 2
9 1 1
9 2 0
9 2 2
9 3 1

0 1 2 3 rSup

0 1 8 9 6 1

1 1 9 2 4 2

2 9 8 9 8 0

3 1 9 2 5 2

cSup 0 0 2 3

low

up

T[x][y] = z

77

‣D(x) = {0,1,3}

‣D(y) = {2,3}

‣D(z) = [2..6] (interval domain)

x

y

z x y
1 0 0
1 1 0
1 3 0
2 1 2
2 3 2
4 1 3
5 3 3
6 0 3
8 0 1
8 2 1
8 2 3
9 0 2
9 1 1
9 2 0
9 2 2
9 3 1

0 1 2 3 rSup

0 1 8 9 6 1

1 1 9 2 4 2

2 9 8 9 8 0

3 1 9 2 5 2

cSup 0 0 2 3

low

up

T[x][y] = z

78

‣D(x) = {0,1,3}

‣D(y) = {2,3}

‣D(z) = [2,3,4..6] (interval domain)

x

y

z x y
1 0 0
1 1 0
1 3 0
2 1 2
2 3 2
4 1 3
5 3 3
6 0 3
8 0 1
8 2 1
8 2 3
9 0 2
9 1 1
9 2 0
9 2 2
9 3 1

0 1 2 3 rSup

0 1 8 9 6 1

1 1 9 2 4 1

2 9 8 9 8 0

3 1 9 2 5 1

cSup 0 0 0 3

low

up

T[x][y] = z

79

x

y

z x y
1 0 0
1 1 0
1 3 0
2 1 2
2 3 2
4 1 3
5 3 3
6 0 3
8 0 1
8 2 1
8 2 3
9 0 2
9 1 1
9 2 0
9 2 2
9 3 1

0 1 2 3 rSup

0 1 8 9 6 1

1 1 9 2 4 1

2 9 8 9 8 0

3 1 9 2 5 1

cSup 0 0 0 3

low

up

Why do we only need to restore
these values on backtrack?

Implementation 1/2

80

 public class Element2D extends AbstractConstraint {

 private final int[][] T;
 private final IntVar x, y, z;
 private int n, m;
 private final StateInt[] rSup;
 private final StateInt[] cSup;

 private final StateInt low;
 private final StateInt up;
 private final ArrayList<Triple> zxy;

 @Override
 public void post() {

 … // some init
 x.propagateOnDomainChange(this);
 y.propagateOnDomainChange(this);
 z.propagateOnBoundChange(this);
 propagate();
 }
 }

z x y
1 0 0
1 1 0
1 3 0
2 1 2
2 3 2
4 1 3
5 3 3
6 0 3
8 0 1
8 2 1
8 2 3
9 0 2
9 1 1
9 2 0
9 2 2
9 3 1

81

private void updateSupports(int lostPos) {
 if (rSup[zxy.get(lostPos).x].decrement() == 0)
 x.remove(zxy.get(lostPos).x);
 if (cSup[zxy.get(lostPos).y].decrement() == 0)
 y.remove(zxy.get(lostPos).y);
}
public void propagate() {
 int l = low.value(), u = up.value();
 int zMin = z.min(), zMax = z.max();

 while (zxy.get(l).z < zMin ||
 !x.contains(zxy.get(l).x) ||
 !y.contains(zxy.get(l).y)) {
 updateSupports(l++);
 if (l > u) throw new InconsistencyException();
 }
 z.removeBelow(zxy.get(l).z);
 low.setValue(l);
 // similarly for up
}

We decrement the support
counters as we only remove values.
The state manager will take care to

restore everything.

Set the low value to the first
consistent entry in the table.

The state manager will restore it
on backtrack.

1D Element Constraint

Element1D Domain Consistency

83

T[y]=z, D(y)={0,1,2,3,4,5}, D(z)={3,4,5}

D(y) 0 1 2 3 4 5

3 4 5 5 4 3T

2 2 2

3 4 5D(z)

zSup

0 1 2 3 4 5

3 4 5 5 4 3

Element1D Domain Consistency

84

‣T[y]=z, D(y)={0,1,2,3,4,5}, assume D(z)={3,4,5}

T

2 2 2

3 4 5D(z)

zSup

Filtering: T[i] ∉ D(z) ⇒ D(y) ← D(y) \ { i }D(y)

Element1D Domain Consistency

85

‣T[y]=z, D(y)={0,1,2,3,4,5}, D(z)={3,4,5}

0 1 2 3 4 5

3 4 5 5 4 3T

2 2 2

3 4 5D(z)

zSup

Filtering: T[i] ∉ D(z) ⇒ D(y) ← D(y) \ { i }D(y)

Element1D Domain Consistency

86

‣T[y]=z, assume D(y)={1,2,3,4} ,D(z)={4,5},

0 1 2 3 4 5

3 4 5 5 4 3T

2 2 2
3 4 5D(z)

zSup For each value v in D(z), set
zSup(v) ← | { i in D(y) : T[i] = v } |

Filtering: zSup(v) = 0 ⇒ D(z) ← D(z) \ { v}

D(y)

2 0 2
3 4 5

Element1D Domain Consistency

87

‣T[y]=z, assume D(y)={1,2,3,4} ,D(z)={4,5},

0 1 2 3 4 5

3 4 5 5 4 3T

D(z)

zSup For each value v in D(z), set
zSup(v) ← | { i in D(y) : T[i] = v } |

Filtering: zSup(v) = 0 ⇒ D(z) ← D(z) \ { v}

Filtering: T[i] ∉ D(z) ⇒ D(y) ← D(y) \ { i }D(y)

Implementation and Time Complexity T[y]=z

88

For each value i in D(y):
T[i] ∉ D(z) ⇒ D(y) ← D(y) \ { i }

For each value v in D(z):
zSup(v) ← | { i in D(y) : T[i] = v } |
zSup(v) = 0 ⇒ D(z) ← D(z) \ { v}

supports = {}
For each value i in D(y):
 supports = supports ∪ {T[i]}
For each value v in D(z):

If v not in supports:
D(z) ← D(z) \ { v}

Element Application
Stable Matching Problem

Stable Matching

90

 Inputs, say for internships:
– Every company provides a

ranking of all the students.
– Every student provides a

ranking of all the
companies.

George

Clive

Halle

Keira

Students Companies

Stable Matching

91

‣A matching of student Halle with IBM is stable if:
– If IBM prefers another student, say George, over Halle, 

then George must prefer his matched company over IBM.
– If student Halle prefers another company, say NASA, over IBM, 

then NASA must prefer their matched student over Halle.

‣These stability rules make a matching stable!

More precisely

92

‣ Input:

• Given are n students and n companies, where each student (resp. company) 
has ranked each company (resp. student) with a unique number between 1 and n 
in order of preference (the lower the number, the higher the preference), 
say for summer internships.

‣ Problem:

• Match the students and companies such that there is no pair of a student and a company
who would both prefer to be matched with each other than with their actually matched ones.

Input/Output

93

George
Clive

Halle

Keira

Google
NASA

SAP

IBM

George Halle Keira Clive

Google 1 2 3 4

IBM 4 3 1 2

NASA 1 2 3 4

SAP 3 4 1 2

Google IBM NASA SAP

George 1 2 3 4

Halle 2 1 3 4

Keira 1 4 3 2

Clive 4 3 1 2

IBM prefers Keira over Clive (1 vs 2) (smaller number is higher preference).

But Keira prefers her matched company (SAP) over IBM (2 vs 4).

rankStudents[c,s] rankCompanies[s,c]

Difficult Problem?

94

Not really:
function stableMatching {
 Initialize all m ∈ M and w ∈ W to free
 while ∃ free man m who still has a woman w to propose to {
 w = first woman on m’s list to whom m has not yet proposed
 if w is free
 (m, w) become engaged
 else some pair (m', w) already exists
 if w prefers m to m'
 m' becomes free
 (m, w) become engaged
 else
 (m', w) remain engaged
 }
}

https://en.wikipedia.org/wiki/Gale-Shapley_algorithm#Algorithm

In 1962, David Gale and Lloyd Shapley proved that, for any equal number of men and women,
it is always possible to solve the stable matching problem and make all marriages stable.

https://en.wikipedia.org/wiki/David_Gale
https://en.wikipedia.org/wiki/Lloyd_Shapley

Stable Matching

95

Data and variables

enum Students = {George,Halle,Keira,Clive};
enum Companies = {Google,IBM,NASA,SAP};

int rankCompanies[Students,Companies];
int rankStudents[Companies,Students];
...

var{Companies} company[Students];
var{Students} student[Companies];

rankCompanies[Halle,Google] is 
the ranking of Google in Halle’s preferences

rankStudents[Google,Halle] is 
the ranking of Halle in the preferences of Google

Stable Matching

96

solve {
 forall(s in Students)
 student[company[s]] = s;
 forall(c in Companies)
 company[student[c]] = c;

 ...
}

Stable Matching

97

solve {
 forall(s in Students)
 student[company[s]] = s;
 forall(c in Companies)
 company[student[c]] = c;

 forall(s in Students, c in Companies)
 rankCompanies[s,c] < rankCompanies[s,company[s]]
 => rankStudents[c,student[c]] < rankStudents[c,s];
 forall(c in Companies, s in Students)
 rankStudents[c,s] < rankStudents[c,student[c]]
 => rankCompanies[s,company[s]] < rankStudents[s,c];
}

s prefers c over their company

Stable Matching

98

solve {
 forall(s in Students)
 student[company[s]] = s;
 forall(c in Companies)
 company[student[c]] = c;

 forall(s in Students, c in Companies)
 rankCompanies[s,c] < rankCompanies[s,company[s]]
 => rankStudents[c,student[c]] < rankStudents[c,s];
 forall(c in Companies, s in Students)
 rankStudents[c,s] < rankStudents[c,student[c]]
 => rankCompanies[s,company[s]] < rankStudents[s,c];
}

c prefers their student over s

Stable Matching

99

enum Students = {George,Halle,Keira,Clive};
enum Companies = {Google,IBM,NASA,SAP};
int rankCompanies[Students,Companies];
int rankStudents[Companies,Students];
...
var{Companies} company[Students];
var{Students} student[Companies];
solve {
 forall(s in Students)
 student[company[s]] = s;
 forall(c in Companies)
 company[student[c]] = c;

 forall(s in Students, c in Companies)
 rankCompanies[s,c] < rankCompanies[s,company[s]]
 => rankStudents[c,student[c]] < rankStudents[c,s];
 forall(c in Companies, s in Students)
 rankStudents[c,s] < rankStudents[c,student[c]]
 => rankCompanies[s,company[s]] < rankStudents[s,c];
}

non-standard Element constraints T[y]=z
because T is an array of variables

logical constraints

Stable Matching

100

‣Two interesting features:
– Element constraint over an array of variables: 

useful in many applications.
– Logical combination of constraints.

‣The Element constraint:
– Ability to index an array/matrix with a variable or an expression containing variables.

‣Logical combination of constraints:
– Can be handled by reification, for instance.

Element Constraint

Over array of variables: relaxed domain consistency

Element1DVar Constraint

102

‣T[y]=z

‣How to propagate efficiently?
‣Two possibilities:

– Domain consistency
– Relaxed (aka hybrid) domain consistency

• assume interval domains for z and all T[i], and enforce bound consistency for them
• enforce domain consistency for y

public Element1DVar(IntVar[] T, IntVar y, IntVar z)

Element1DVar: Relaxed Domain Consistency

103

‣T[y]=z
– T = [{1,3},[1..2],{1,9},{1,2,6}]
– y = {0,1,3}
– z = {4,6,7}
– What can we remove and how?

y 0 1 2 3

z T[0] T[1] T[2] T[3]

9

8

7

6

5

4

3

2

1

Element1DVar: Relaxed Domain Consistency

104

‣T[y]=z
– T = [{1,3},[1..2],{1,9},{1,2,6}]
– y = {0,1,3}
– z = {4,6,7}

‣Step 0: Relax T and z: interval domains
– T = [[1..3],[1..2],[1..9],[1..6]]
– y = {0,1,3}
– z = [4..7]

y 0 1 2 3

z T[0] T[1] T[2] T[3]

9

8

7

6

5

4

3

2

1

Element1DVar: Relaxed Domain Consistency

105

‣T[y]=z
– T = [{1,3},[1..2],{1,9},{1,2,6}]
– y = {0,1,3}
– z = {4,6,7}

‣Step 1: Filter (from T and z to) y
– T = [[1..3],[1..2],[1..9],[1..6]]
– y = {0,1,3}
– z = [4..7]

y 0 1 2 3

z T[0] T[1] T[2] T[3]

9

8

7

6

5

4

3

2

1

∀i∈D(y): 
D(T[i]) ⋂ D(z) = ∅ ⇒ D(y) ← D(y) \ {i}

Element1DVar: Relaxed Domain Consistency

106

‣T[y]=z
– T = [{1,3},[1..2],{1,9},{1,2,6}]
– y = {0,1,3}
– z = {4,6,7}

‣Step 2: Filter (from T and y to) z
– T = [[1..3],[1..2],[1..9],[1..6]]
– y = {3}
– z = [4..6]

y 0 1 2 3

z T[0] T[1] T[2] T[3]

9

8

7

6

5

4

3

2

1

min(D(z)) ← max(min(D(z)), mini ∈D(y) min(T[i]))
max(D(z)) ← min(max(D(z)), maxi ∈D(y) max(T[i]))

Element1DVar: Relaxed Domain Consistency

107

‣T[y]=z
– T = [{1,3},[1..2],{1,9},{1,2,6}]
– y = {0,1,3}
– z = {4,6,7}

‣Step 3: Filter (from z and y to) T
– T = [[1..3],[1..2],[1..9],[4..6]]
– y = {3}
– z = [4..6]

y 0 1 2 3

z T[0] T[1] T[2] T[3]
9

8

7

6

5

4

3

2

1

|D(y)|=1 ⇒ T[y]=z (equality constraint)

The domain of a variable T[i] can only be filtered under that condition

Element1DVar: Relaxed Domain Consistency

108

‣T[y]=z
– Now assume T = [{1,3},[1..2],{1,9},{1,2,5}]
– y = {0,1,3}
– z = {4,6,7}
– Notice that this constraint is infeasible
– But we do not detect it

y 0 1 2 3

z T[0] T[1] T[2] T[3]

9

8

7

6

5

4

3

2

1

Not
detected

Element Constraint

Over array of variables: domain consistency

Element1DVar: Domain Consistency

110

‣T[y]=z
– T = [{1,6},[1..2],{1,9},{1,2,6}]
– y = {0,1,2,3}
– z = {4,6,7}

‣Step 1: Filter (from T and z) to y
– T = [{1,6},[1..2],{1,9},{1,2,6}]
– y = {0,1,2,3}
– z = {4,6,7}

Y 0 1 2 3

Z T[0] T[1] T[2] T[3]

9

8

7

6

5

4

3

2

1

∀i∈D(y): 
D(T[i]) ∩ D(z) = ∅ ⇒ D(y) ← D(y) \ {i}

Can be quite slow to compute:
Efficient intersection with sparse-set domains?

DC Filtering: residue = support caching

111

‣∀i∈D(y): 
D(T[i]) ∩ D(z) = ∅ ⇒ D(y) ← D(y) \ {i}

‣ If we find for a value i∈D(y) some value v such that v∈D(T[i]) and v∈D(z),
then remember it (caching). Let us call it supportT[i].
‣There is a high chance that, on the next propagation, this value is still

preventing the removal D(y) ← D(y) \ {i}.
‣But if supportT[i] ∉ D(T[i]), then one needs to look for a new support, 

if not possibly perform D(y) ← D(y) \ {i}.
‣O(1) check if the support is still valid, else O(|D(T[i])|).

Element1DVar: Domain Consistency

112

‣T[y]=z
– T = [{1,6},[1..2],{1,9},{1,2,6}]
– y = {0,1,2,3}
– z = {4,6,7}

‣Step 1: Filter (from T and z) to y
– T = [{1,6},[1..2],{1,9},{1,2,6}]
– y = {0,1,2,3}
– z = {4,6,7}

Y 0 1 2 3

Z T[0] T[1] T[2] T[3]

9

8

7

6

5

4

3

2

1

∀i∈D(y): 
D(T[i]) ∩ D(z) = ∅ ⇒ D(y) ← D(y) \ {i}

Can be quite slow to compute:
efficient intersection with sparse-set domains?

supportT

Element1DVar: Domain Consistency

113

‣T[y]=z
– T = [{1,6},[1..2],{1,9},{1,2,6}]
– y = {0,1,2,3}
– z = {4,6,7}

‣Step 2: Filter (from T and y) to z
– T = [{1,6},[1..2],{1,9},{1,2,6}]
– y = {0,3}
– z = {4,6,7}

Can be quite slow to compute:
need to scan possibly the whole domain of y for each value v

∀v∈D(z): 
∄i∈D(y): v ∈ D(T[i]) ⇒ D(z) ← D(z) \ {v}

Y 0 1 2 3

Z T[0] T[1] T[2] T[3]

9

8

7

6

5

4

3

2

1

DC Filtering: Support caching

114

‣∀v∈D(z): 
∄i∈D(y): v ∈ D(T[i]) ⇒ D(z) ← D(z) \ {v}

‣Again, the same caching idea: assume v cannot be removed. 
Then we can store an index i such that v ∈ D(T[i]): call it support_z[v].
‣There is a high chance that, on the next propagate, v ∈ D(T[support_z[v]]),

and in this case we cannot remove v from D(z).
‣Otherwise, look for a new support.
‣O(1) check if the support is still valid, else O(|D(y)|).

Element1DVar: Domain Consistency

115

‣T[y]=z
– T = [{1,6},[1..2],{1,9},{1,2,6}]
– y = {0,1,2,3}
– z = {4,6,7}

‣Step 2: Filter (from T and y) to z
– T = [{1,6},[1..2],{1,9},{1,2,6}]
– y = {0,3}
– z = {4,6,7}

∀v∈D(z): 
∄i∈D(y): v ∈ D(T[i]) ⇒ D(z) ← D(z) \ {v}

Y 0 1 2 3

Z T[0] T[1] T[2] T[3]

9

8

7

6

5

4

3

2

1

‣support_z[6]=0

Element1DVar: Domain Consistency

116

‣T[y]=z
– T = [{1,6},[1..2],{1,9},{1,2,6}]
– y = {0,1,2,3}
– z = {4,6,7}

‣Step 3: Filter (from z and y) to T
– T = [{1,6},[1..2],{1,9},{1,2,6}]
– y = {0,3}
– z = {6}

Y 0 1 2 3

Z T[0] T[1] T[2] T[3]

9

8

7

6

5

4

3

2

1

|D(y)|=1 ⇒ T[y]=z (equality constraint) 
The domain of a variable T[i] can only be filtered under that condition

Remark about Caching

117

‣Those cached supports remain valid on backtrack (no need for reversibles)
because a support for the constraint in a node of the search tree is also a
support for the ancestors of that node: do you see why?

Logical Constraints
and reified constraints

IsLessOrEqual

119

public class IsLessOrEqual extends AbstractConstraint { // b <=> x <= v

 private final BoolVar b;
 private final IntVar x;
 private final int v;

 @Override
 public void post() {
 if (b.isTrue()) {
 x.removeAbove(v);
 } else if (b.isFalse()) {
 x.removeBelow(v + 1);
 } else if (x.max() <= v) {
 b.fix(1);
 } else if (x.min() > v) {
 b.fix(0);
 } else {
 b.whenFixed(() -> {
 // should deactivate the constraint as it is entailed
 if (b.isTrue()) {
 x.removeAbove(v);

 } else {
 x.removeBelow(v + 1);
 }
 });
 x.whenBoundChange(() -> {
 if (x.max() <= v) {
 // should deactivate the constraint as it is entailed
 b.fix(1);
 } else if (x.min() > v) {
 // should deactivate the constraint as it is entailed
 b.fix(0);
 }
 });
 }
 }
}

enum Students = {George,Halle,Keira,Clive};
enum Companies = {Google,IBM,NASA,SAP};
int rankCompanies[Students,Companies];
int rankStudents[Companies,Students];
...
var{Companies} company[Students];
var{Students} student[Companies];
solve {
 forall(s in Students)
 student[company[s]] = s;
 forall(c in Companies)
 company[student[c]] = c;

 forall(s in Students, c in Companies)
 rankCompanies[s,c] < rankCompanies[s,company[s]]
 => rankStudents[c,student[c]] < rankStudents[c,s];
 forall(c in Companies, s in Students)
 rankStudents[c,s] < rankStudents[c,student[c]]
 => rankCompanies[s,company[s]] < rankStudents[s,c];
}

Logical Constraints

120

‣How to implement cp.post(x > y ⇒ w < z) ?

‣Easy: (x > y) can be reified b1: BoolVar ≡ x > y

‣Same for: (w < z) can be reified b2: BoolVar ≡ w < z

‣b1 ⇒ b2 ≡ (!b1 or b2) ≡ (1–b1)+b2 ≥ 1 (views, sum, etc) ≡ b1 ≤ b2.

‣ In order to make it even more general, we have

‣This way you can post arbitrary logical expressions in MiniCP

public void post(BoolVar b) throws InconsistencyException {
 b.fix(true);
 fixPoint();
}

