Constraint
Programming

Disjunctive Scheduling

Pierre Schaus

%ﬂt‘m
- DIsjunctive Decomposition

- Job Shop

Job-Shop Problem

> Color = resource (or: machine), with capacity 1.
> Precedence constraints (denoted «) on the activities of a job.

job 1:
job 2:

job 3:
job 4:
job 5:

job 6:

£ < < K <
AR 7~ N

minimize makespan

time

’Mini

Disjunctive Resource, aka Unary Resource Ao

It would yield a Cumulative constraint
with all resource requirements ri = 1 and capacity C = 1:

/ The activities cannot overlap!

C=1

Binary Decomposition for a Unary Resource

> Let T be a set of n activities that cannot overlap.
» VI,]e T wherei<]:
Di
off

bij # bji (either i ends before | starts, or vice-versa)

Si + di = S;

Sj + dj < S

> How does this binary decomposition compare with timetable filtering
for Cumulative([si,...,sn],[d1,...,dn],[1,...,1],1)7

Binary Decomposition: Example

> The binary decomposition with reified constraints
IS at least as strong as timetable filtering for Cumulative.

> Example where the binary decomposition is strictly stronger:

Activity A has no mandatory part:
no pruning for B with timetable filtering!

’Mini

Job-Shop Model

JobShopInstance instance = new JobShopInstance(“start”);

Solver cp = makeSolver();
// variable creation
IntVar[][] start = new IntVar[instance.nJobs][instance.nMachines];
IntVar[][] end = new IntVar[instance.nJobs][instance.nMachines];
for (int i1 = 0; 1 < instance.nJobs; i++) {
for (int j = 0; j < instance.nMachines; Jj++) {
start[i1][]J] = makeIntVar(cp, 0, instance.horizon);
end[1][]J] = plus(start[i1][]], instance.duration[i][]]);

}
}

// job precedences
for (int 1 = 0; 1 < instance.nJobs; i++) {
for (int j = 1; j < instance.nMachines; j++) {
cp.post(lessOrEqual(end[i][]J - 1], start[i][3]]1));
}
}

// disjunctive constraints
for (int m = 0; m < instance.nMachines; m++) {
// collect activities on machine m
IntVar[] start m = instance.collect(start, m);
int[] dur m = instance.collect(instance.duration, m);
cp.post(new Disjunctive(start m, dur m));
}
// objective = makespan minimization
IntVar[] endLast = new IntVar[instance.nJobs];
for (int 1 = 0; 1 < instance.nJobs; i++) {

endLast[i] = end[i][instance.nMachines - 17];
}
IntVar makespan = maximum(endLast);
Objective obj = cp.minimize(makespan);

// search to fix the start time of all activities
DFSearch dfs = makeDfs(cp, firstFail(flatten(start)));

job 1:
job 2:

job 3:
jiob 4:
job 5:

job 6:

<

<

<

<

<

minimize makespan

’Mini

time

Search for Job Shop

Search for Job Shop

> Two alternatives
1. Fix the start variables
2. Fix the ordering on each machine (and eventually the start variables)

Search for Job Shop: fix the start variables fin

» Assume A and B execute on
the same machine, and their
starts are not yet fixed.

> Pick one, say B, and branch to
fix 1ts start.

Branch on start of B

olifzls]elsfe]7fe]o

start(B) = 1 start(B) = 1

e |]

o |

olifz]sfelsfe]rfe]o olifz]afe]sfefr]sfo

10

Search for Job Shop: fix the ordering o

» Assume A and B execute on
the same machine, and we do
not know yet if A will execute
before or after B.

olifz]sfelsfe]rfe]o

A <<B A>B

|

[|

olifz]sfelsfe]rfe]s olifz]sfelsfe]rfe]o

11

Fixing the ordering

> Post the reified constraints in the model:
» Vi,]e T wherei<]j:

Di

o]

bij # bji (either i ends before | starts, or vice-versa)

Si+di<S

Sj+ dj < S

> Branch on the bjvariables during the search

12

Fixing the ordering for the Job Shop

1: Fix the ordering (total
order on each machine)

job 1: ,
b 2: 2: Fix makespan to its minimum
j | | A,. — (always feasible)
job 3: 7‘
/|

i Y\) minimize

4: “
job ‘! 1 makespan
job 5:
job 6:

time

Grimes, D., Hebrard, E., & Malapert, A. (2009). Closing the open shop: Contradicting conventional wisdom. In
International Conference on Principles and Practice of Constraint Programming, 2009

13

Earliest Completion Time

Notation and Definitions £

» Let () C T be a subset of a set T of non-overlapping activities:
=min {estj|j € Q} =
=max {Ictj | j € Q} =
=Zeﬂm=

15

Earliest Completion Time”? Why is it important?

» Assume that we know that A, B, C, D must precede E

» Then E cannot start before the earliest completion time of the four activities

<

A g y

<

<

16

’Mini

Earliest Completion Time”? Why is it important?

» Assume that we know that A, B, C, D must precede E

» Then E cannot start before the earliest completion time of the four activities

ol fofalefs]elzfalofrofu]reftofre]rsfre]rr]rsfro]z0]21

17

’Mini

Earliest Completion Time? Why is it important?

» Assume that we know that A, B, C, D must precede E

» Then E cannot start before the earliest completion time of the four activities

E cannot start
before 17

18 ofr]zfafa]sfe]rfefo]rofn]rz]rafre]rs]ro [@rsfrofz0]z1

’Mini

Earliest Completion Time

> Things get complicated when activities have time windows (domains)
> ect({A,B,C,D}) = 21

We cannot do better than 21

This problem is NP-hard ®
See Garey and Johnson, problem SS1

. COMPUTERS AND INTRACTABILITY
: A Guide to the Theory of NP-Completeness

19

’Mini

Sequencing with Time Windows is NP-Complete

> Reduction from the 3-Partition problem (known to be NP-complete) to our
problem of interest

> 3-Partition (https://en.wikipedia.org/wiki/3-partition_problem):
— The input is a multiset S of n = 3m positive integers with sum m T.

— The output is whether or not there exists a partition of S
into mtriplets S, S, ..., S», each with sumT.
(The S, S, , ..., Sm must thus be disjoint and cover S.)

20

https://en.wikipedia.org/wiki/3-partition_problem
https://en.wikipedia.org/wiki/Partition_of_a_set
https://en.wikipedia.org/wiki/Disjoint_sets
https://en.wikipedia.org/wiki/Cover_(topology)

Sequencing with Time Windows is NP-Complete

> Example: The set S ={ 20, 23, 25, 30, 49, 45, 27, 30, 30, 40, 22, 19 }
can be partitioned into the four triplets { 20, 25, 45 }, { 23, 27, 40 },
{49, 22, 19 }, { 30, 30, 30 }, each of which sums to T = 90.

Interval 1 Interval 2 Interval 3 Interval 4

Sequencing with Time Windows is NP-Complete

> Example: The set S ={ 20, 23, 25, 30, 49, 45, 27, 30, 30, 40, 22, 19 }
can be partitioned into the four triplets { 20, 25, 45 }, { 23, 27, 40 },
{49, 22, 19 }, { 30, 30, 30 }, each of which sums to T = 90

————————————
—

— — — — — — — — — — — — — — — — — - — —
— — - — — — — — — — — — — —

Interval 1 Interval 2 Interval 3 Interval 4

’Mini

Sequencing with Time Windows is NP-Complete

> Example: The set S ={ 20, 23, 25, 30, 49, 45, 27, 30, 30, 40, 22, 19 }
can be partitioned into the four triplets { 20, 25, 45 }, { 23, 27, 40 },
{49, 22, 19 }, { 30, 30, 30 }, each of which sums to T = 90.

> T=90 > T=90 > T=90 > T=90

- +-—— —eeee -

(e prm | tm @ |

Interval 1 Interval 2 Interval 3

Interval 4

’Mini

Lower Bound on the Earliest Completion Time

» Relaxation of the time windows:
keep the earliest start time but relax the latest completion time

Lower bound on the earliest completion time
' =18 (<= 21)

This relaxation is easy to solve &.

You can for instance sort the activities by
earliest start time and schedule them as
soon as possible.

ofi]zfo]efs]efr]sfo]rofn]refrafra]rsfre]rrfts]rofen]zn

24

’Mini

Lower Bound on the Earliest Completion Time

ComputeECTLowerBound(T={1..n}) {

Test « sortAZ([1..n],sortKey = est) // O(n log n)
ect = -1nf

for ('L « Test) {
ect « max(esti+di , ect+di)

¥

return ect

25

’Mini

Lower Bound on the Earliest Completion Time L

> This lower bound can be formally defined as
ecty® = max{esty + dg | Q' C Q}

> But, as just seen, we do not need to enumerate all the subsets,
since we can compute it in O(n log n) time for n activities.

> In the following, by abuse of notation and since we will always use the lower bound,
we drop “LB”:

ecty” is denoted by ecty

260

Latest Starting Time (same idea) i

» We also introduce an upper bound on the latest starting time (mirroring problem), which is
Ista = min {lcto—dq' | Q" € Q}

27

Conventions for empty set

> By convention:
esty = ecly =—
IStz = Icty = 4o
dz=0

28

Earliest Completion Times
of nested sets of activities

Earliest completion times of nested sets

> Given n activities from the set T, given nested sets of activities
Q={T,} CQ,CQyC--CQQ =T with Q, =€Q. ,U{T;}

» Can we compute all ect(£2,), ect(£2,), ect(£2,), ..., ect(£2) efficiently?

> Naive approach: compute each independently: O(n2log n) time
> More efficient approach: use a data structure called a ©-tree

30

Small example of nested sets

u

B

ofr]zfaa]sfe]zfefo]rofn]rz]rsfre]rsfref7]rsfro]z0]i|

31

’Mini

noook
4+

Q ect({A})?

Q, ect({A,B))?

{23
€2

ect{A,B,C})?
ect({A,B,C,D})?

®©-tree intuition

> The goal is to mimic the behavior of the seen algorithm:

ComputeECTLowerBound(T=1{1..n}) { h
Test « sortAZ([1..n],sortKey = est)
ect = -1nf I:
for ('L « Tes’c) {
ect « max(esti+di , ect+di) I:
h
return ect I:

olifz]sfelsfe]rfe]o]rofu]refra]refrs]reft7]ra]ro]a0]2n

32

’Mini

®©-tree intuition

> The goal is to mimic the behavior of the seen algorithm:

ComputeECTLowerBound(T={1..n}) {

Test « sortAZ([1..n],sortKey = est)
ect = -1nf

33

ect(B,D)

1: activities are sorted wrt est

’Mini

Bottom up computation Lo
A

ectascp =

olifz]sfelsfe]rfe]o]tofu]refrs]refrs]ref17]rs

ectsp = 15

Time complexity?

What do we gain compared to simple algorithm?? fo

>
Not the same prOblem ComputeECTLowerBound(T={1..n}) {

> We wanted to compute ect for nested sets Test « SOF}EAZCEL .n],sortKey = est)
| | _ ect = -1n
> @-tree can deal with it, not the simple algo for (i « Test) {
ect « max(esti+di , ect+di)

¥

return ect

35

©-tree, initialization

> Empty set of activities

Insertion of A

Insertion of B

Insertion of C

ectasc =)((ﬂ-l's', le) = l'f

R

Insertion of D

AnBcD = A

ectaBcD =

& *(ﬂf’,'f)=|7

’Mini

Apscp = 17
ectascp = 18

’Mini

noook

Total time complexity?

O-Tree: Incremental Removal of C

> To remove activity | from a ©-tree: set Aj = 0 and ectj = —.

(2+9, 45‘) =AY

Asp=9
ectsp = 15

42

’Mini

Wrap-up on ©-trees fin

A for a set Q) of n activities is

—a balanced binary tree,

—whose leaf nodes correspond to the activities of Q) (sorted according to est),
—whose internal nodes have intermediate A and ect values, and

—whose root node has ecto.

Operation Time complexity

init({1..n}) O(n log n) Initialize an empty O-tree for the activites {1..n}
insert(i) O(log n) Insert activity | into the ©-tree

remove(i) O(log n) Remove activity i from the O-tree

ect O(1) Return ect of the set of activities in the O-tree

Overload Checker

Overload Checking = a feasibility check

ofr]efafa]sfelr]afo]rofnfiz]rafrafts

45

’Mini

Overload Checking = a feasibility check o

» vQ CT:(estg+dq > lctqg ~ fall)

> |f there exists a subset of activities that cannot be processed within its
bounds, then no solution exists.
Example: -

This failure
Is not captured by the
binary decomposition
of Disjunctive.

ofr]efafa]sfelr]afo]rofnfiz]rafrafts

> Take Q) ={A,B,C}:
esto =0, dqg =5+5+6 = 16, Icto = 15, 0+16 > 15 ~ fall.

46

Overload Checking: time complexity? Lo

>» v Q CT:(estg+dq > Ictog ~ fail)

» \We need to enumerate all subsets Q) of T, hence 2Tl checks.

> |t Is not very practical to embed an algorithm of exponential time complexity
IN a propagator.

> We need something else...

47

Overload Checking: improve efficiency
={il1e T & lcti = Ictj}. I
Example: T={A,B,C,D}

LCUt(T,A) —

LCut(7,C) =

LCut(T,B) = o[TelsleTsTeTrTe o rofr re[ss]re s

48

’Mini

Overload Checking: reformulation with LCut

vQCT:(estog+dq > lIctg ~ fail)

can be reformulated as:

v e T :ectcurj > Icticuyr) ~ fall

equivalent to |
by definition

VjeT:ectcurT)>lct ~ fall

49

’Mini

Overload Checking: example with LCut

—]
[]

[|

oJi]o]salslelzfafofrofnlru]r]r]s

For example, take | = B,
with LCut(7,B) = {A,B,C} = subset of activities ending by the end of B:

ectcuyr,B) = 16 > IctLcuy7) = 15 = Icts (the red equality is true by definition).

50

’Mini

Overload Checker taking O(n2 log n) time

Overload checking rule:
v]eT:(ecticuyr) > lct; ~ fail)

O(n2 log n) time

OverloadCheckInefficient(T={1..n}) {
for (3 « {1..n}) {
O « O-Tree.1n1t({1..n}) // O(n log n) time
for (1 « LCut(T,3)) {
O.1nsert(1) // 0(Clog n) time
}
1f (0.ect > lcty) { // 0C1) time
throw InconsistencyException
}
}
}

51

’Mini

. Nested LCut

LCut(r)) ={ili1e T &lcti = lctj}

52

Overload Checker taking O(n log n) time o

—Let T ={1..n} be ordered such that Ict1 = ... < lcty.
—Then LCut(T,1) € LCut(T,2) c ... € LCut(T,n) = T: all activities are eventually inserted.

OverloadCheckEfficient(T={1..n}) {
O « O-Tree.1n1t({1..n}) // O(n log n) time
T « sortAZ([1l..n],sortkey = 1ct) // O(n log n) time
for (J « T) {
O.1nsert(3) // 0(Clog n) time
// 1invariant: © contains LCut(T,j)
1f (0.ect > lcty) { // 0C1) time
throw InconsistencyException

¥
¥
¥

53

Overload Checking with ©-Tree: an example fi

> Application of OverloadCheckEfficient algorithm on this example

54

Overload Checking with ©-Tree: an example o
} Empty O-Tree initialization

|

of1]2]s]afsfelz]s]ofrofr]iz]ts]rafrs

OverloadCheckEfficient(T={1..n}) {
T « sortAZ([1l..n],sortkKey = 1ct)
O « O-Tree.1nit({1l..n})
for (3 «T) { // [C,A,B]
0.1insert(3)
1f (0.ect > 1cty) {
throw InconsistencyException

¥
¥
¥

Icta = 14 Icts = 15

55

Overload Checking with ©-Tree: an example o
} Insertion of C

|

of1]2]s]afsfelz]s]ofrofr]iz]ts]rafrs

OverloadCheckEfficient(T={1..n}) { _
T « sortAZ([1..n],sortKey = lct) Aag=0
O « O-Tree.1nit({1l..n})
for (3 «T) { // [C,A,B]
0.1insert(3) // J = C
1f (0.ect > 1cty) {
throw InconsistencyException

ectag = —

¥
¥
¥

Icta = 14 Icts = 15

56

Overload Checking with ©-Tree: an example
} Feasibility check

|

of1]2]s]afsfelz]s]ofrofr]iz]ts]rafrs

OverloadCheckEfficient(T={1..n}) { A _ O
T « sortAZ([1..n],sortkKey = 1lct) AB —
O « O-Tree.1n1t({1l..n}) _
for (j « T) { // [C,A,B] ectag = —
0.1insert(3) // J = C
1f (@.ect > 1cty) { // 9 > 13
throw InconsistencyException

h
¥
¥

Icta = 14 Icts = 15

S7

’%ﬂhﬂ

Overload Checking with ©-Tree: an example

}

Insertion of A

of1]2]s]afsfelz]s]ofrofr]iz]ts]rafrs

OverloadCheckEfficient(T={1..n}) {
T « sortAZ([1l..n],sortkKey = 1ct)
O « O-Tree.1nit({1l..n})
for (3 «T) { // [C,A,B]
O.1insert(3) //] = A
1f (0.ect > 1cty) {
throw InconsistencyException

¥
¥
¥

Icta = 14 Icts = 15

58

’%ﬂhﬂ

Overload Checking with ©-Tree: an example

}

Feasiblility check

Aroot = 11
eCtroot =11

of1]2]s]afsfelz]s]ofrofr]iz]ts]rafrs

OverloadCheckEfficient(T={1..n}) {
T « sortAZ([1..n],sortkKey = 1ct)
O « O-Tree.1n1t({1l..n})
for (3 «T) { // [C,A,B]
O.1insert(3) // 7 = A
if (0.ect > lcty) { // 11 < 14 4
throw InconsistencyException

h
¥
¥

Icta = 14 Icts = 15

59

’%ﬂhﬂ

Overload Checking with ©-Tree: an example
} Insertion of B

|

of1]2]sfa]s]efz]a]o]roft1]12f43]1af15
OverloadCheckEfficient(T={1..n}) { Aag = 10 5/

ectas = 10)’5

T « sortAZ([1l..n],sortkKey = 1ct)
O « O-Tree.init({1l..n})
for (3 «T) { // [C,A,B]
O.1insert(3) // j = B
1f (0.ect > 1cty) {
throw InconsistencyException

¥
¥
¥

Icta = 14 Icts = 15

60

’%ﬂhﬂ

Overload Checking with ©-Tree: an example

}

Feasiblility check

Aroot= 16

eCtroot = 16

of1]2]s]afsfelz]s]ofrofr]iz]ts]rafrs

OverloadCheckEfficient(T={1..n}) { Ans= 10

T « sortAZ([1..n],sortkKey = 1ct)
O « O-Tree.1n1t({1l..n})
for (3 «T) { // [C,A,B]
0.1insert(3) // J = C
if (0.ect > lcty) { // 16 > 15 X
throw InconsistencyException

h
¥
¥

ectas = 10

Icta = 14 Icts = 15

61

’%Ahﬂ

Detectable Precedences

Detectable Precedences = a filtering rule

> Both A and B cannot be scheduled after C

> Therefore they must both be scheduled before

of1fofsfafsfef7[s|ofrofn]r]rs]ra]rs]re]r

63

’Mini

Detectable Precedences = a filtering rule

> Both A and B must end before C starts is denoted by {A,B} « C

> By taking the earliest start of A and (duration A + duration B),
we can filter (push) the start of C to 10

of1fofsfafsfef7[s|ofrofn]r]rs]ra]rs]re]r

64

’Mini

Detectable Precedences = a filtering rule

> A | <1 1S if esti+ di> Ictj— d;

that is If ecti > Istj then activity | cannot start after activity | ends.

Set of all activities with detectable precedence before i:
={)1]e T\{i} & esti+di>Icti—d;}.

> Filtering: esti « max(esti, ectoprec(T)), for all i € T.

65

Nested sets”? £

» DPrec’(T,i)={]:jeT & esti+d>lIctj—d; }.
Note that activity i| is sometimes in DPrec’(T,1).

» Hence: DPrec(T,i) = DPrec’(T,i) \ {i}.

> |n what order should the activities | be considered to have nested DPrec’(T,i) sets?

66

Order on i to have nested DPrec'(T,i) sets

esti+di

lcty-d;

67

’Mini

Iterating on activities £

» Let T = {1..n} be ordered such that

- esti+di<estr+do< ... <esth + dn

> This is exactly what we are looking for:
an order to consider the activities | of T such that the detectable precedence set is growing
monotonically, as this is very important for computing all ectperec(r) €fficiently & incrementally
with a O-tree.

» Note that DPrec’(T,n) is not necessarily T:
not necessarily all activities are eventually inserted into the initialized ©O-tree.

68

Detectable Precedences: O(n log n) time

DetectablePrecedence(T={1..n}) {

Tist « sortAZ([1..n],sortKey = 1ct-d) // O(n log n)

Tect « sortAZ([1..n],sortKey = est+d) // O(n log n)

ite « iterator(Tist)

j « 1te.next() // candidate precedence of 1

O « O-Tree.1nt({1..n}) // O(n log n) time

for (1 « Tect) {

while (esti+di > lctj-di) { This is executed at most n times

O.1nsert(j) // 0(log n) time
1f (1te.hasNext()) {j « 1te.next()} else {break}

}
est’i « max(esti, ecteni) // 0(log n) time

¥
esti « est’i, Vi€T

lst

Because © contains DPrec’(T,i) and not DPrec(T,i):

©.remove(i), use ©.ect for max, ©O.insert(i).

69

Detectable precedence filtering with ©-Tree, an example 7.
:I Sorting

] |
h :| est, +d

ofrf2oafelsfelrfs]ofro]ifra]iafra]tsfre]sr

DetectablePrecedence(T={1..n}) {
Tist « sortAZ([1..n],sortKey
Tect « sortAZ([1..n],sortKey
ite « iterator(Tist) |
j « ite.next() // candidate precedence of 1 -
0 « 0-Tree.init({l..n}) [
for (1 « Tect) 1 oI1I2I3I4I5I6I7Isl9I10I11I12I13I14I15I16I17I g

while (esti+di > lctj-dj) {
0.1nsert(3j)
1f (1te.hasNext()) {j < ite.next()} else {break}

lct-d) /
est+d) /

A,B,

= L

NN
—

¥

est’i « max(esti, ecte\i)

¥

esti « est’i, Vi€T
}70

Detectable precedence filtering with ©-Tree, an example 7.

A em] ©-Tree initialiation

t

est; + d,;

':""""u........

|o 1la2l3glglslel 7 gl ol10l 111121131141 151 161 17!

DetectablePrecedence(T={1..n}) {
Tist « sortAZ([1..n],sortKey
Tect « sortAZ([1..n],sortKey
ite « iterator(Tist)

j « 1te.next() // candidate precedence of 1
O « O-Tree.1n1t({1l..n})
for (1 « Tect) {
while (esti+di > lctj-dj) {
0.1nsert(3j)
1f (1te.hasNext()) {j < ite.next()} else {break}

lct-d) // [A, B, (]
est+d) // [A, B, (]

¥

est’i « max(esti, ecte\i)

h

esti « est’i, Vi€T
}71

Detectable precedence filtering with ©-Tree, an example

(. A] First iteration: A is considered

covo) e

| o' 1la2l3glglslel 7 gl ol10l 111121131141 151 161 17!

DetectablePrecedence(T={1..n}) {
Tist « sortAZ([1..n],sortKey
Tect « sortAZ([1..n],sortKey
ite « iterator(Tist)

j « 1te.next() // candidate precedence of 1
O « O-Tree.1n1t({1..n})
for (1 « Tect) 1 // 1 « A
while (esti+di > lctj-dj) {
0.1nsert(3j)
1f (1te.hasNext()) {J < i1te.next()} else {break}

lct-d) // [A, B, (]
est+d) // [A, B, (]

¥

est’i « max(esti, ecte\i)

¥

esti « est’i, V1i€T
72

¥

ﬂ&mi

Detectable precedence filtering with ©-Tree, an example

First iteration: A Is considered

A

.. Nothing to
aaaay insert into the O-tree

Aag=0

| -
9l10"111121 131141151161 171 ectag = —

8

DetectablePrecedence(T={1..n}) {
Tist « sortAZ([1..n],sortKey
Tect « sortAZ([1..n],sortKey
ite « iterator(Tist)

j « 1te.next() // candidate precedence of 1
O « O-Tree.1n1t({1..n})
for (1 « Tect) 1 // 1 « A
while (esti+di > lctj-dj) {
0.1nsert(3j)
1f (1te.hasNext()) {] < i1te.next()} else {break}

lct-d) // [A, B, (]
est+d) // [A, B, (]

¥

est’i « max(esti, ecte\i)

¥

esti « est’i, V1i€T
73

¥

’Mini

Detectable precedence filtering with ©-Tree, an example 7.

VN B R T R SR S N (O S S A S

TP [o] Second iteration: B is considered

|o 1la2l3lgfslel 7 gl ol10l 111121131141 151 161 17!

DetectablePrecedence(T={1..n}) {
Tist « sortAZ([1..n],sortKey
Tect « sortAZ([1..n],sortKey
ite « iterator(Tist)

j « 1te.next() // candidate precedence of 1
O « O-Tree.1n1t({1..n})
for (1 « Tect) { // 1 « B
while (esti+di > lctj-dj) {
0.1nsert(3j)
1f (1te.hasNext()) {J < i1te.next()} else {break}

lct-d) // [A, B, (]
est+d) // [A, B, (]

¥

est’i « max(esti, ecte\i)

¥

esti « est’i, Vi€T
}74

Nothing to insert
Into the O-tree

I Arg = 0
N T TN T (N [N N N [N N N N Y (O
[of1h2tatalstel 78l 9l100111121137 14715016717 ectag = —

DetectablePrecedence(T={1..n}) {
Tist « sortAZ([1..n],sortKey
Tect « sortAZ([1..n],sortKey
ite « iterator(Tist)

j « 1te.next() // candidate precedence of 1
O « O-Tree.1n1t({1..n})
for (1 « Tect) { // 1 « B
while (esti+di > lctj-dj) {
0.1nsert(3j)
1f (1te.hasNext()) {] < i1te.next()} else {break}

lct-d) // [A, B, (]
est+d) // [A, B, (]

I3

est’i « max(esti, ecte\i)
}
esti « est’i, Vi€T

75
¥

Detectable precedence filtering with ©-Tree, an example 7.

st 4 nmn Third iteration: C Iis considered

|
':"""'u........

|o 1la2l3lglstel 7 gl ol10l 111121131141 151 161 17!

DetectablePrecedence(T={1..n}) {
Tist « sortAZ([1..n],sortKey
Tect « sortAZ([1..n],sortKey
ite « iterator(Tist)

j « 1te.next() // candidate precedence of 1
O « O-Tree.1n1t({1..n})
for (1 « Tect) { // 1 « C
while (esti+di > lctj-dj) {
0.1nsert(3j)
1f (1te.hasNext()) {J < i1te.next()} else {break}

lct-d) // [A, B, (]
est+d) // [A, B, (]

¥

est’i « max(esti, ecte\i)

h

esti « est’i, Vi€T
}76

Detectable precedence filtering with ©-Tree, an example 7.

Third iteration: C is considered

A and B will be
Inserted
into the O©-tree

est; + p;

t

|o 112l 314l 516

Ans=0
ectagp = —

DetectablePrecedence(T={1..n}) {
Tist « sortAZ([1..n],sortKey
Tect « sortAZ([1..n],sortKey
ite « iterator(Tist)

j « 1te.next() // candidate precedence of 1
O « O-Tree.1n1t({1..n})
for (1 « Tect) { // 1 « C
while (esti+di > lctj-dj) {
0.1nsert(3j)
1f (1te.hasNext()) {] < i1te.next()} else {break}

lct-d) // [A, B, (]
est+d) // [A, B, (]

¥

est’i « max(esti, ecte\i)

¥

esti « est’i, Vi€T
}77

Detectable precedence filtering with ©-Tree, an example 7.
Insertion of A

est; + p; A and B will be

Inserted
into the ©-tree

DetectablePrecedence(T={1..n}) {
Tist « sortAZ([1..n],sortKey
Tect « sortAZ([1..n],sortKey
ite « iterator(Tist)

j « 1te.next() // candidate precedence of 1
O « O-Tree.1n1t({1..n})
for (1 « Tect) { // 1 « C
while (esti+di > lctj-dj) {
0.1nsert(3j)
1f (1te.hasNext()) {] < i1te.next()} else {break}

lct-d) // [A, B, (]
est+d) // [A, B, (]

¥

est’i « max(esti, ecte\i)

¥

esti « est’i, V1i€T
78

¥

Detectable precedence filtering with ©-Tree, an example 7.
Insertion of B

est; + p; A and B will be

Inserted
into the ©-tree

DetectablePrecedence(T={1..n}) {
Tist « sortAZ([1..n],sortKey
Tect « sortAZ([1..n],sortKey
ite « iterator(Tist)

j « 1te.next() // candidate precedence of 1
O « O-Tree.1n1t({1..n})
for (1 « Tect) { // 1 « C
while (esti+di > lctj-dj) {
0.1nsert(3j)
1f (1te.hasNext()) {] < i1te.next()} else {break}

lct-d) // [A, B, (]
est+d) // [A, B, (]

¥

est’i « max(esti, ecte\i)

¥

esti « est’i, V1i€T
79

¥

Detectable precedence filtering with

est; + p;

I T T O I
|0| |

10f 111121131 141151 161 17!

A and B will be

Aroot = 10
eCtroot =10

Inserted

into the O-tree
Aag =10 NAc=0
ectas = 10 eclc = —=

lCtj — Py

DetectablePrecedence(T={1..n}) {

Tist « sortAZ([1..n],sortKey
Tect « sortAZ([1..n],sortKey
ite « iterator(Tist)

lct-d) // [A, B, (]
est+d) // [A, B, (]

j « 1te.next() // candidate precedence of 1

O « O-Tree.init({1..n})
for (1 « Tect) { // 1 « C
while (esti+di > lctj-dj) {
0.1insert(j)

1f (1te.hasNext()) {] < i1te.next()} else {break}

¥

est’; « max(esti, ecte\i)

3
esti « est’i, Vi€T

-

¥

estc=est'c=10

T—
s]

ofr1J2fsfafs]efz]afolofrr]iz]rafra]rs]re]s7

©-Tree, an example 7.

Not-Last

Not-Last = another filtering rule

» Activity C cannot be scheduled after (A and B):

so C must end before A or B (or both)

I: It is impossible to have {A,B} « C,

ofr]efafa]sfefr]afo]rofnfiz]rofrafts

82

’Mini

Not-Last = another filtering rule

> Activity C cannot be scheduled after (A and B)

|

Take the minimum of the two cases:
lctc < min(lctc, max{lcte—ds, Icta—da}).

—
[
[

ofr]efafa]sfefr]afo]rofnfiz]rofrafts

83

’Mini

Not-Last filtering formally defined

» VQ c T non-empty strict subset of T, Vi e T\Q:

esto+ da > Icti—di ~ Icti « min(lcti, max {lctj— dj| j €Q}) (NL)

> Example: For QQ = {A,B}, activity i = C cannot start last:

It is impossible to have {A,B} « C,
so C must end before A or B (or both):
Ictc < min(lctc, max{lcte—ds, Icta—da}).

ofr]efafa]sfelr]afo]rofnfiz]rafrafts

> Again, we need to find a way to enumerate the Q) in a nested way.

84

’Mini

Not-Last filtering formally defined

» VQ c T non-empty strict subset of T, Vi e T\Q:

esto+ da > Icti-di ~ Icti « min(lcti, max {lctj—dj|j€Q}) (NL)

> Example: For QQ = {A,B}, activity i = C cannot start last:

| e
| mr

ofr]efafa]sfelr]afo]rofnfiz]rafrafts

It is impossible to have {A,B} « C,
so C must end before A or B (or both):
Ictc < min(lctc, max{lcte—ds, Icta—da}).

> Again, we need to find a way to enumerate the Q) in a nested way.

85

’Mini

Not-Last Rule Lo

» esto+ dq >lcti-di ~ lcti « min(lcti, max {lctj—d;|je QQ}) (NL)

» Observation: If there is a subset Q) for which this rule actually filters,
then it is a subset of ={jljeT\{i} & lctj—dj<Ict;}.

[(] -

I: :I A is not in NLSet(T,i), but B and C are in it!

| |
|]

ofr]efafa]sfe]r]afo]rofnfiz]rafrafrs

86

Not-Last Rule

» esto+ dq >Icti—di ~ Icti « min(lcti, max {lctj—d;|j € Q})

» Observation: If there is a subset Q) for which this rule actually filters,
then it is a subset of ={jlje T\{i} & lctj—dj< Ict;}.

» Does there exist a subset () ¢ NLSet(T,1) for which
the detection part of the rule (hamely estq + do > Icti— di) also holds?

» Such a subset exists if and only if
max {esto + do' | Q’ ¢ NLSet(T,i)} > Icti—d;.

The left-hand side is the definition of ectnLsetT,) :

this probably means that a ©-tree will be useful...

87

(NL)

’Mini

NOt'LaSt RUIe ’Mini

Let us make this more efficient!

» The existence of a subset () € NLSet(T,i) triggering the rule can be tested as
ectnLset(r) > Icti— di

» The problem is that we then do not have a subset Q for filtering (we only test for the existence
of it to trigger the rule).

» But do we really need it?
No! if we accept to relax the filtering:
max {lctj— dj| j € Q} < max {lctj— d;| j € NLSet(T,i)} < Ict

Because () ¢ NLSet(T,i):

the advantage of this relaxation
Is that we do not need a Q!

38

VWeaker Not-Last Rule £

» esto+ dqo > lcti—di ~ Icti « min(lcti, max {lctj—d;|je Q}) (NL)
> ectnisetr) >Icti—-di ~ Icti < max {lctj—d; | j € NLSet(T,i)} (NL)

» Rule N’ may filter less than rule NL, but the fixpoint is the same.

39

Not-Last: Implementation fin
»Recall: NLSet(T,) ={j|je T\ {i} & lctj—dj<Icti}.
»\We are looking for an order on | so as to have nested sets.

> et ={jljeT & lctj—dj< Ict; }.
Note that i is always in NLSet’(T,i).

> |n what order should we consider activities to have nested NLSet’(T,i) sets”?

90

Not-Last: Filtering Algorithm

lcti

91

lcty-d;

’Mini

Not-Last: Implementation £

> et ={jljeT & lctj—dj< Ict; }.
Note that i is always in NLSet’(T,i).

» L et T ={1..n} be ordered such that Ict1 <lIcto< ... < Ictn:
then NLSet’(T,1) € NLSet’(T,2) € ... € NLSet’(T,n) = T:

all activities are eventually inserted into the initialised O-tree.

> Now we have a way to compute the NLSet(T,i) incrementally when using a ©-tree.

92

Not-Last: Filtering Algorithm

NotLast(T={1..n}) {
lct’i « lcti, VieT

Tist « sortAZ([1l..n_
Tict « sortAZ([1l..n]
ite « iterator(Tist)
k « 1te.next()
j < -1
O « O-Tree.1n1t({1..n}) // O0(n log n) time
for (1 « Tict) {
while (lcti > lctk-dk) {
O.1nsert(k) // 0(log n) time
J « k // lctj-dj =max {lctk - dv : k € NLSet(T,1)}
k « 1te.next()

lct-d) // O(n log n) time
lct) // O(n log n) time

, SortkKey
, SortkKey

$
1f (ecteni > lcti-di) { // O(log n) time
Llct’i « min(lcti, lctj-dj)
}
¥
lcti « lct’i, Vi€ET
¥

93

’Mini

Not last filtering with ©-Tree, an example

—— | Sorting

of+]l2fsfalsfefz]sfofro]ufrafrs]afrs

lct, — d,

NotLast(T={1..n}) {
lct’i « lcti, VieT

Tist « sortAZ([1..n],sortKey = 1ct-d) // [A, C, B]
Tict « sortAZ([1..n],sortkey = 1ct) // [C, A, B]
1te « 1terator(Tist)

k « 1te.next() // k = A

j « -1

O « O-Tree.in1t({1..n})

94

’Mini

Not last filtering with ©-Tree, an example

[Ctz'

NotLast(T={1..n}) {
lct’i « lcty, VieT
Tist « sortAZ([1l..n],sortKey = 1ct-d) // [A, C, B]
Tict « sortAZ([1l..n],sortkKey = 1ct) // [C, A, B]
ite « iterator(Tist)
k « 1te.next() // k = A
j « -1
O « O-Tree.1n1t({1l..n})

95

O-Tree Initialisation

Nroot =0
eClroot = —
Apg=0 Ac=0
ectagp = — eCtc = —0

’Mini

Not last filtering with ©-Tree, an example

First iteration: C Is considered

lCti Aroot = 0
eClroot = —
Apg=0 Ac=0
ectag = — ecCtc = —

NotLast(T={1..n}) {

O « O-Tree.1n1t({1..n})
for (1 « Tiet) 1 // 1 « C
while (lcti > lctk-dv) {
O.1nsert(k) // 0Clog n) time
Jj « k // lctj-dj =max {lctk - dc : k € NLSet(T,1)}
k « 1te.next()
ks
1f (ecteni > lcti-di) { // 0(log n) time
lct’i « min(lcti, lctj-d;)
ks
ks
lcti « lct’i, Vi€T

06

’Mini

Not last filtering with ©-Tree, an example

] First iteration: C is considered

Aroot =0
A, C, B inserted root)
in O-tree, they all belong to €Clroot = —
NLSet’(C)

lCti

[ct, — d,

Ansg=0

ectag = —

NotLast(T={1..n}) {

O « O-Tree.1n1t({1..n})
for (1 « Tiet) 1 // 1 « C
while (lcti > lctk-dv) {
O.1nsert(k) // 0Clog n) time
Jj « k // lctj-dj =max {lctk - dc : k € NLSet(T,1)}
k « 1te.next()
ks
1f (Cecteni > lcti-di) { // 0Clog n) time
lct’i « min(lcti, lctj-d;)
ks
ks
lcti « lct’i, Vi€T

7/

’Mini

Not last filtering with ©-Tree, an example o

Insertion of A

Aroot = 9 Q/
A,C, _and B will eCtroot =5 _f
be inserted

in the ©-tree

lCti

NotLast(T={1..n}) {

O « O-Tree.1n1t({1l..n})
for (1 « Tiet) 1 // 1 « C
while (lcti > lctk-dv) { // k = A
0.1nsert(k) // 0(log n) time
Jj « k // lctj-dj =max {lctk - dv : k € NLSet(T,1)}
k « 1te.next()
ks
1f (ecteni > lcti-di) { // O(log n) time
lct’i « min(lcti, lctj-d;)
¥
ks
lcti « lct’i, Vi€ET

198

Not last filtering with ©-Tree, an example

Insertion of C

lCti

A,C, _and B will eCtoot = 97
be inserted

in the ©-tree

NotLast(T={1..n}) {

O « O-Tree.1n1t({1..n})
for (1 « Tiet) 1 // 1 « C
while (lcti > lctk-dv) { // k = C
0.1nsert(k) // 0(log n) time
j « k // lctj-dy =max {lctk - dc : k € NLSet(T,1)}
k « 1te.next()
ks
1f (ecteni > lcti-di) { // O(log n) time
lct’i « min(lcti, lctj-d;)
¥
ks
lcti « lct’i, Vi€ET

199

’Mini

Not last filtering with ©-Tree, an example

Insertion of B

let; Aot =149/
A,C, and B will eCtroot = 14 ﬂ
be inserted
in the ©-tree
T ,A S 1()59/ Ac=4
T T A T A T A A M A |
011 1213141516 17 Ig g o i1 h2 |13 14 ectag = 10 5 ectc =7

NotLast(T={1..n}) {

O « O-Tree.1n1t({1l..n})
for (1 « Tiet) 1 // 1 « C
while (lcti > lctk-dv) { // k = B
O.1nsert(k) // 0Clog n) time
Jj « k // lctj-dj =max {lctk - dc : k € NLSet(T,1)}
k « 1te.next()
ks
1f (ecteni > lcti-di) { // 0(log n) time
lct’i « min(lcti, lctj-d;)
ks

3
lcti « lct’i, Vi€T
100

1&Hﬂ

Not last filtering with ©-Tree, an example i
©\{C}

Aroot= 10 14
eCtroot = 10 1/

lctz-

Aag = 10 AC=04}/
ectag = 10 ectc = — /7

NotLast(T={1..n}) {

O « O-Tree.1n1t({1l..n})
for (1 « Tiet) 1 // 1 « C
while (lcti > lctk-dv) { // k = B
0.1nsert(k) // 0(log n) time
j « k // lctj-dj =max {lctk - dc : k € NLSet(T,1)}
k « 1te.next()
ks
1f (ectoni > lcti-di) { // ectonc = 10 and lctc-dc = 9
lct’i « min(lcti, lcti-dj)
ks

; .
lcti « lct’i, Vi€T Ict’c = min(lctc, Icts-ds) =10

101

Not last filtering with ©-Tree, an example

Second iteration: A is considered

lct; Aroot = 14
eCtroot = 14
All activities are already
in the ©-Tree
Ans =10 Ac=4
ectas = 10 ecic =7

NotLast(T={1..n}) {

O « O-Tree.1n1t({1..n})
for (1 « hiet) 1 // 1 « A
while (lcti > lctk-dv) {
0.1nsert(k) // 0(log n) time
Jj « k // lctj-dj =max {lctk - dv : k € NLSet(T,1)}
k « 1te.next()
ks
1f (Cecteni > lcti-di) { // 0Clog n) time
lct’i « min(lcti, lctj-d;)
ks

3
lcti « lct’i, Vi€ET
102

R

Not last filtering with ©-Tree, an example i
O\ {A}

Aroot= 9 14/
eCtroot = 10 }/4

lctz-

AAB=51¢ NAc=4
ectag = 6 }() ectc = 7

NotLast(T={1..n}) {

O « O-Tree.1n1t({1..n})
for (1 « Tiet) 1 // 1 « A
while (lcti > lctk-dv) {
0.1nsert(k) // 0(log n) time
j « k // lctj-dy =max {lctk - dc : k € NLSet(T,1)}
k « 1te.next()
ks
1f (ectoni > lcti-di) { // ectown = 10 and lcta-da = 9
lct’i « min(lcti, lctyi-dj)
ks

} : :
lcti « lct?’s, Vi€T lct’a = min(lcta, Icte-de) = 10

103

Not last filtering with ©-Tree, an example

Third iteration: B i1s considered

lct; Aroot = 14
eCtroot = 14
All activities are already
in the ©-Tree
Ans =10 Ac=4
ectas = 10 ecic =7

NotLast(T={1..n}) {

O « O-Tree.1n1t({1..n})
for (1 « Tiet) 1 // 1 « B
while (lcti > lctk-dv) {
0.1nsert(k) // 0(log n) time
Jj « k // lctj-dj =max {lctk - dv : k € NLSet(T,1)}
k « 1te.next()
ks
1f (Cecteni > lcti-di) { // 0Clog n) time
lct’i « min(lcti, lctj-d;)
ks

3
lcti « lct’i, Vi€ET
104

R

Not last filtering with ©-Tree, an example
© \ {B}

Aroot=9 14
eClroot = 9 yél

[Ctz'

A N N O O N N
ol1 T2 T3 TgTsTe 17 1g 19 liol11 21314115 116 117

NotLast(T={1..n}) {

O « O-Tree.1n1t({1..n})
for (1 « Tiw) { // 1 « B
while (lcti > lctk-dv) {
O.1nsert(k) // 0Clog n) time
j « k // lctj-dy =max {lctk - dc : k € NLSet(T,1)}
k « 1te.next()
ks
1f (ectoni > lcti-di) { // ectows = 9 and lctsg-ds = 10
lct’i « min(lcti, lctj-d;)
ks

3
lcti « lct’i, Vi€ET
105

Ap =5 1}5
ectas = 5 1/)

’Mini

Not last filtering with ©-Tree, an example

lCtz’

NotLast(T={1..n}) {

O « O-Tree.1n1t({1..n})
for (1 « Thet) { // 1 « B
while (lcti > lctk-dv) {
0.1nsert(k) // 0(log n) time
j « k // lctj-dy =max {lctao - do : Q € NLSet(T,1)}
k « 1te.next()
¥
1f (ecteni > lcti-di) { // ectows = 9 and lctg-ds = 10
lct’i « min(lcti, lctj-d;)
¥

3
lcti « lct’i, Vi€T
106

?-

ofJefe]efs]efr]efofw]ufr]ufu]mn

’Mini

Not last filtering with ©-Tree, an example

lCtz’

NotLast(T={1..n}) {

O « O-Tree.1n1t({1..n})
for (1 « Thet) { // 1 « B
while (lcti > lctk-dv) {
0.1nsert(k) // 0(log n) time
j « k // lctj-dy =max {lctao - do : Q € NLSet(T,1)}
k « 1te.next()
¥
1f (ecteni > lcti-di) { // ectows = 9 and lctg-ds = 10
lct’i « min(lcti, lctj-d;)
¥

3
lcti « lct’i, Vi€T
107

?-

ofJefe]efs]efr]efofw]ufr]ufu]mn

’Mini

Edge Finder

Edge Finding
» VQcT, Vie T\Q = arbitrary non-empty subset of T

» estaui +davi >lcta = Q «1 ~ esti —max {est;, ectq} (EF)

» i must be scheduled after the set Q)

| -]

o
[

impossible to schedule {A,B,C,D}

before Icticp

| thus we must have {B,C,D} <« A

ofr]efafa]sfelr]afo]rofnfiz]rafrafrs

109

’Mini

Edge Finding

» Reformulation of EF for easier implementation

LCut(T,j) ={i|i e T &lcti = Ict}

VijieT VieT\LCut(T,)):
ectLcutTjui > Ictj = LCut(T,)) « |

~ esti «— max {eSti, eCtLCut(T,j)} (EF,)

> Implementation using ©-tree considering j and i wrt LCut(T,))
e O = LCut(T,)
e O-Tree.insert(i), check if ecte >Ict; O(log n) for testing one (i,j)
e O.remove(i)

O(n2 log n) overall => too slow!

110

’Mini

©-A\-Tree = generalization of ©-Tree

» ect(©-A\) = max({ecto},{ectoui: i € A\})

e earliest completion time if at most one gray activity used
> New values stored in the nodes (in addition to Ay & ecty)

e Av =max{pe'|l ©'clLeaves(v) & IO’n Al =1}

e ecty = eCtiLeaves(v) = Max {este+pe’ | ©'ClLeaves(v) & 1©0'n Al = 1}
» Update rule

e Ay = max {Aieftv)+Arigntv), Dleft(v)+Aright(v) }

* ecty = max {eCtright(v),EClieft(v)+Aright(v),EClieft(v)+Aright(v) }

© and A disjointsets: O n A =9

111

’Mini

Example £

> O-N-Tree: ©={a,b,d} A={c}

112

Responsible Activities fin

> For each node v we can also compute the gray activity responsible for Ay or
ecty

> _eaf nodes:
e respa(l) =1ifiis gray, undef otherwise
* respect(l) =11f 1 1s gray, undef otherwise
> Internal nodes:
o respa(Vv) = respa(left(v)) if Av = Aleftv)+Arignt(v),
respa(right(v)) otherwise
* respect(V) = respect(right(v)) if ecty = ectright(v)
respect(left(v)) If ectv = eClieftv)+Aright(v)
respa(right(v)) if ecty = ecCtieft(v)+Aright(v)

113

Complexities

114

Operation

Time Complexity

(O, A) =0, 0)

(O, A) :=(T, 0)

(@, A) = O\ {1}, AU{i})
G =0 Ui}

A=A Ui}

A=A\ {i)

ect(®, A)

eCle

O(1)

O(n logn)
O(log n)
O(log n)
O(log n)
O(log n)
O(1)

O(1)

’Mini

Edge Finding: The big picture

Lt e

while (ect(0-A) > lcty) {
1 « respect(0-A)
esti « max{esti,ecto}

AN« AN\1 // 0Clog n)

Retrieve the activity of A

responsible

¥

115

’Mini

Edge Finding Algorithm

EdgeFinding(T={1..n}) {
(0,AN) = (T,2) // 0(n log n) time
Tict « sortZA([1..n],sortkKey = lct) // O(n log n) time
ite « iterator(Tict)
J = 1te.next()
while (1te.hasNext()) {
1f (ecte > 1lctj) throw InconsistencyException // overload
(6,N) = (B\j,Au3y) // O(Clog n) time
J « 1te.next()
while (ect(0-A) > 1cty) { // 0(1) time
1 « respect(0-A)
esti « max{esti,ecto}
AN « AN\1 // O('I_og n) time Executed at most n times

¥
¥
¥

116

’Mini

FIX-point

Reminder on ldempotency

118

Putting it all together £

> None of the algorithms above is idempotent.

> According to Petr Vilim (see next slide),
the following order for fixpoint computation is very efficient:

Overload CheCking inconsistent fail

lcon sistent

changed
Detectable Precedences

\no change
changed Not-First/Not-Last

Ino change
chang(_jed E dge B ding

\no change
changed Precedence Graph

lno change

Fixpoint
119

Bibliography

> Most of the notation, examples, ... come from
Petr Vilim’s PhD thesis (https://vilim.eu/petr/disertace.pdf),
where all the proofs omitted here can be found.

> This thesis had a big impact on CP solvers because most of the algorithms
for a disjunctive resource introduced by Petr Vilim take O(n log n) time
instead of O(n2) or O(n3).

120

’Mini

http://vilim.eu/petr/disertace.pdf

