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Job-Shop Problem

‣Color = resource (or: machine), with capacity 1.
‣Precedence constraints (denoted ≪) on the activities of a job.
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It would yield a Cumulative constraint 
with all resource requirements ri = 1 and capacity C = 1:

Disjunctive Resource, aka Unary Resource

C=1

The activities cannot overlap!



Binary Decomposition for a Unary Resource

‣ Let T be a set of n activities that cannot overlap.


‣ ∀ i, j ∈ T where i < j:
• bij  ≡  si + di ≤ sj

• bji  ≡  sj + dj ≤ si

• bij ≠ bji   (either i ends before j starts, or vice-versa)

‣ How does this binary decomposition compare with timetable filtering  
for Cumulative([s1,…,sn],[d1,…,dn],[1,…,1],1)?
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‣ The binary decomposition with reified constraints 
is at least as strong as timetable filtering for Cumulative.

‣ Example where the binary decomposition is strictly stronger:

Binary Decomposition: Example

A

B

Activity A has no mandatory part: 
no pruning for B with timetable filtering!



Job-Shop Model
JobShopInstance instance = new JobShopInstance(“start”);

Solver cp = makeSolver();
// variable creation
IntVar[][] start = new IntVar[instance.nJobs][instance.nMachines];
IntVar[][] end = new IntVar[instance.nJobs][instance.nMachines];
for (int i = 0; i < instance.nJobs; i++) {
    for (int j = 0; j < instance.nMachines; j++) {
        start[i][j] = makeIntVar(cp, 0, instance.horizon);
        end[i][j] = plus(start[i][j], instance.duration[i][j]);
    }
}
// job precedences
for (int i = 0; i < instance.nJobs; i++) {
    for (int j = 1; j < instance.nMachines; j++) {
        cp.post(lessOrEqual(end[i][j - 1], start[i][j]));
    }
}
// disjunctive constraints
for (int m = 0; m < instance.nMachines; m++) {
    // collect activities on machine m
    IntVar[] start_m = instance.collect(start, m);
    int[] dur_m = instance.collect(instance.duration, m);
    cp.post(new Disjunctive(start_m, dur_m));
}
// objective = makespan minimization
IntVar[] endLast = new IntVar[instance.nJobs];
for (int i = 0; i < instance.nJobs; i++) {
    endLast[i] = end[i][instance.nMachines - 1];
}
IntVar makespan = maximum(endLast);
Objective obj = cp.minimize(makespan);
// search to fix the start time of all activities
DFSearch dfs = makeDfs(cp, firstFail(flatten(start)));
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Search for Job Shop
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Search for Job Shop

‣Two alternatives :
1. Fix the start variables
2. Fix the ordering on each machine (and eventually the start variables)
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‣Assume A and B execute on 
the same machine, and their 
starts are not yet fixed.
‣Pick one, say B, and branch to 

fix its start.

Search for Job Shop: fix the start variables

B

0 1 2 3 4 5 6 7 8 9

A
Branch on start of B

B

0 1 2 3 4 5 6 7 8 9

A

B

0 1 2 3 4 5 6 7 8 9

A

start(B) = 1 start(B) ≠ 1
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‣Assume A and B execute on 
the same machine, and we do 
not know yet if A will execute 
before or after B.

Search for Job Shop: fix the ordering

B

0 1 2 3 4 5 6 7 8 9

A

A << B A >> B

B

0 1 2 3 4 5 6 7 8 9

A

B

0 1 2 3 4 5 6 7 8 9

AA << B A >> B



Fixing the ordering
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‣ Post the reified constraints in the model:
‣ ∀ i, j ∈ T where i < j:

• bij  ≡  si + di ≤ sj

• bji  ≡  sj + dj ≤ si

• bij ≠ bji   (either i ends before j starts, or vice-versa)

‣ Branch on the bij variables during the search



Fixing the ordering for the Job Shop
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time

job 1:

job 2:

job 3:

job 4:

job 5:

job 6:

minimize 
makespan

≪ ≪ ≪ ≪ ≪

1: Fix the ordering (total 
order on each machine)

2: Fix makespan to its minimum 
(always feasible)

Grimes, D., Hebrard, E., & Malapert, A. (2009). Closing the open shop: Contradicting conventional wisdom. In 
International Conference on Principles and Practice of Constraint Programming, 2009 



Earliest Completion Time
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Notation and Definitions

‣ Let Ω ⊆ T be a subset of a set T of non-overlapping activities:

• estΩ = min {estj | j ∈ Ω} = earliest starting time of Ω

• lctΩ = max {lctj | j ∈ Ω} = latest completion time of Ω

• dΩ = ∑j ∈ Ω dj = total duration of Ω
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Earliest Completion Time? Why is it important?
‣Assume that we know that A, B, C, D must precede E


‣Then E cannot start before the earliest completion time of the four activities
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Earliest Completion Time? Why is it important?
‣Assume that we know that A, B, C, D must precede E


‣Then E cannot start before the earliest completion time of the four activities
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Earliest Completion Time? Why is it important?
‣Assume that we know that A, B, C, D must precede E


‣Then E cannot start before the earliest completion time of the four activities
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≪

≪
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≪

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

A B C D

ect of 
A,B,C,D

E cannot start 
before 17



Earliest Completion Time

‣Things get complicated when activities have time windows (domains)
‣ect({A,B,C,D}) = 21
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A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

D

20

We cannot do better than 21 

21

This problem is NP-hard 😢 
See Garey and Johnson, problem SS1



Sequencing with Time Windows is NP-Complete

‣Reduction from the 3-Partition problem (known to be NP-complete) to our 
problem of interest
‣3-Partition (https://en.wikipedia.org/wiki/3-partition_problem):

– The input is a multiset S of n = 3m positive integers with sum m T.
– The output is whether or not there exists a partition of S  

into m triplets S1, S2, …, Sm, each with sumT. 
(The S1, S2 , …, Sm must thus be disjoint and cover S.)
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https://en.wikipedia.org/wiki/3-partition_problem
https://en.wikipedia.org/wiki/Partition_of_a_set
https://en.wikipedia.org/wiki/Disjoint_sets
https://en.wikipedia.org/wiki/Cover_(topology)


Sequencing with Time Windows is NP-Complete

‣Example: The set S = { 20, 23, 25, 30, 49, 45, 27, 30, 30, 40, 22, 19 } 
can be partitioned into the four triplets { 20, 25, 45 }, { 23, 27, 40 }, 
{ 49, 22, 19 }, { 30, 30, 30 }, each of which sums to T = 90.
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Sequencing with Time Windows is NP-Complete

‣Example: The set S = { 20, 23, 25, 30, 49, 45, 27, 30, 30, 40, 22, 19 } 
can be partitioned into the four triplets { 20, 25, 45 }, { 23, 27, 40 }, 
{ 49, 22, 19 }, { 30, 30, 30 }, each of which sums to T = 90.
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Interval 1
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Sequencing with Time Windows is NP-Complete

‣Example: The set S = { 20, 23, 25, 30, 49, 45, 27, 30, 30, 40, 22, 19 } 
can be partitioned into the four triplets { 20, 25, 45 }, { 23, 27, 40 }, 
{ 49, 22, 19 }, { 30, 30, 30 }, each of which sums to T = 90.
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‣T = 90‣T = 90

Interval 1

‣T = 90

Interval 2 Interval 4Interval 3

‣T = 90

20 25 45 23 27 40 49 22 19 30 30 30



Lower Bound on the Earliest Completion Time

‣Relaxation of the time windows: 
keep the earliest start time but relax the latest completion time

24

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

D

20

Lower bound on the earliest completion time 
= 18 (<= 21) 
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This relaxation is easy to solve 🥳. 
You can for instance sort the activities by 
earliest start time and schedule them as 

soon as possible.



Lower Bound on the Earliest Completion Time
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ComputeECTLowerBound(T={1..n}) {
  Test ← sortAZ([1..n],sortKey = est) // O(n log n)
  ect = -inf
  for (i ← Test) {
    ect ← max(esti+di , ect+di)
  }
  return ect
}



Lower Bound on the Earliest Completion Time

‣ This lower bound can be formally defined as 



‣ But, as just seen, we do not need to enumerate all the subsets, 
since we can compute it in O(n log n) time for n activities.


‣ In the following, by abuse of notation and since we will always use the lower bound, 
we drop “LB”:  

 is denoted by  

ectLB
Ω = max{estΩ′￼

+ dΩ′￼
∣ Ω′￼ ⊆ Ω}

ectLB
Ω ectΩ
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Latest Starting Time (same idea)

‣ We also introduce an upper bound on the latest starting time (mirroring problem), which is 
lstΩ   = min {lctΩ’ – dΩ’ | Ω’ ⊆ Ω}
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Conventions for empty set

‣ By convention:

• est∅ = ect∅ = –∞

• lst∅ = lct∅  = +∞  

• d∅ = 0

28



Earliest Completion Times 
of nested sets of activities
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Earliest completion times of nested sets

‣Given n activities from the set T, given nested sets of activities

‣Can we compute all  efficiently?

‣Naïve approach: compute each independently: O(n2 log n) time 
‣More efficient approach: use a data structure called a Θ-tree

Ω1 = {T1} ⊂ Ω2 ⊂ Ω3 ⊂ ⋯ ⊂ Ωn = T with Ωi = Ωi−1 ∪ {Ti}

ect(Ω1), ect(Ω2), ect(Ω3), …, ect(Ωn)

30



Small example of nested sets
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A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

D

20 21

A B C D

Ω1

Ω2

Ω3

T

Ω4

ect({A})?

ect({A, B})?

ect({A, B, C})?
ect({A, B, C, D})?



Θ-tree intuition

‣The goal is to mimic the behavior of the seen algorithm:
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ComputeECTLowerBound(T={1..n}) {
  Test ← sortAZ([1..n],sortKey = est)
  ect = -inf
  for (i ← Test) {
    ect ← max(esti+di , ect+di)
  }
  return ect
}

A

B

C

D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

[A,C,B,D]



Θ-tree intuition

‣The goal is to mimic the behavior of the seen algorithm:
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ComputeECTLowerBound(T={1..n}) {
  Test ← sortAZ([1..n],sortKey = est)
  ect = -inf
  for (i ← Test) {
    ect ← max(esti+di , ect+di)
  }
  return ect
}

A

B

C

D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

A C B D

ect(A,C) ect(B,D)

ect(A,C,B,D)

2: bottom-up ect computation

1: activities are sorted wrt est
A C B D



Bottom up computation
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esta = 0 
pa = 2 
Δa = 2 

ecta = 2 

estc = 3 
pc = 6 
𝚺Pc = 6 

ectc = 9

estb = 5 
pb = 5 
𝚺Pb = 5 

ectb = 10

estd = 11 
pd = 4 
𝚺Pd = 4 

ectd = 15

Δac = 8 
ectac = 9

𝚺Pbd = 9 

ectbd = 15

𝚺PABCD = 
17 

ectabcd = 18

A

B

C

D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A C B D

ΔABCD = 
ectABCD =

ΔAC = 
ectAC = 

ΔBD = 9 
ectBD = 15

estA = 
dA =  
ΔA = 
ectA = 

estC = 3 
dC = 6 
ΔC = 6 
ectC = 9

estB = 5 
dB = 5 
ΔB = 5 
ectB = 10

estD = 11 
dD = 4 
ΔD = 4 
ectD = 15 

Δv  =  

ectv =

Update rule for each non-leaf v:

Time complexity?



What do we gain compared to simple algorithm?

‣Not the same problem
‣We wanted to compute ect for nested sets
‣Θ-tree can deal with it, not the simple algo

35

ComputeECTLowerBound(T={1..n}) {
  Test ← sortAZ([1..n],sortKey = est)
  ect = -inf
  for (i ← Test) {
    ect ← max(esti+di , ect+di)
  }
  return ect
}

A B C D

Ω1

Ω2

Ω3

T

Ω4



Θ-tree, initialization

‣Empty set of activities
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A B C D

Ω1

Ω2

Ω3

T

Ω4

estA = 0 
dA = 2 
ΔA = 0 
ectA = -∞ 

estC = 3 
dC = 6 
ΔC = 0 
ectC = -∞

estB = 5 
dB = 5 
ΔB = 0 
ectB = -∞

estD = 11 
dD = 4 
ΔD = 0 
ectD = -∞

Δ∅ = 0 
ect∅ = -∞

Δ∅ = 0 
ect∅ = -∞

Δ∅ = 0 
ect∅ = -∞

A C B D



Insertion of A
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A B C D

Ω1

Ω2

Ω3

T

Ω4

estA = 0 
dA = 2 
ΔA = 2 
ectA = 2 

estc = 3 
pc = 6 
Δc = 0 
ectc = -∞

estb = 5 
pb = 5 
Δb = 0 
ectb = -∞

estd = 11 
pd = 4 
Δd = 0 
ectd = -∞

ΔA = 
ectA = 

Δ∅ = 0 
ect∅ = -∞

ΔA =  
ectA = 

A C B D

estC = 3 
dC = 6 
ΔC = 0 
ectC = -∞

estB = 5 
dB = 5 
ΔB = 0 
ectB = -∞

estD = 11 
dD = 4 
ΔD = 0 
ectD = -∞



Insertion of B
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A B C D

Ω1

Ω2

Ω3

T

Ω4

estA = 0 
dA = 2 
ΔA = 2 
ectA = 2 

estc = 3 
pc = 6 
Δc = 0 
ectc = -∞

estB = 5 
dB = 5 
ΔB = 5 
ectB = 10

estd = 11 
pd = 4 
Δd = 0 
ectd = -∞

ΔA = 2 
ectA = 2

ΔB =        
ectB = 

ΔAB =    
ectAB =   

A C B D

estC = 3 
dC = 6 
ΔC = 0 
ectC = -∞

estD = 11 
dD = 4 
ΔD = 0 
ectD = -∞



Insertion of C
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A B C D

Ω1

Ω2

Ω3

T

Ω4

estA = 0 
dA = 2 
ΔA = 2 
ectA = 2 

estC = 3 
dC = 6 
ΔC = 6 
ectC = 9

estB = 5 
dB = 5 
ΔB = 5 
ectB = 10

estd = 11 
pd = 4 
Δd = 0 
ectd = -∞

ΔAC =  
ectAC = 

ΔB = 5        
ectB = 10 

ΔABC =    
ectABC =   

A C B D

estD = 11 
dD = 4 
ΔD = 0 
ectD = -∞



Insertion of D
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A B C D

Ω1

Ω2

Ω3

T

Ω4

estA = 0 
dA = 2 
ΔA = 2 
ectA = 2 

estC = 3 
dC = 6 
ΔC = 6 
ectC = 9

estb = 5 
pb = 5 
Δb = 5 
ectb = 10

estD = 11 
dD = 4 
ΔD = 4 
ectD = 15

ΔAC = 8  
ectAC = 9 

ΔBD =         
ectBD = 

ΔABCD =    
ectABCD = 

A C B D

estB = 5 
dB = 5 
ΔB = 5 
ectB = 10
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A B C D

Ω1

Ω2

Ω3

T

Ω4

estA = 0 
dA = 2 
ΔA = 2 
ectA = 2 

estc = 3 
pc = 6 
Δc = 6 
ectc = 9

estb = 5 
pb = 5 
Δb = 5 
ectb = 10

estD = 11 
dD = 4 
ΔD = 4 
ectD = 15

ΔAC = 8 
ectAC = 9

ΔBD = 9 
ectBD = 15

ΔABCD = 17 
ectABCD = 18

A C B D

Total time complexity?

estc = 3 
pc = 6 
Δc = 6 
ectc = 9

estC = 3 
dC = 6 
ΔC = 6 
ectC = 9

estB = 5 
dB = 5 
ΔB = 5 
ectB = 10
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‣To remove activity i from a Θ-tree: set Δi = 0 and ecti = –∞.

Θ-Tree: Incremental Removal of C

estA = 0 
dA = 2 
ΔA = 2 
ectA = 2 

estC = 3 
dC = 6 
ΔC = 0 
ectC = -∞

estB = 5 
dB = 5 
ΔB = 5 
ectB = 10

estD = 11 
dD = 4 
ΔD = 4 
ectD = 15

ΔA = 
ectA =

ΔBD = 9 
ectBD = 15

ΔABD = 
ectABD =

A C B D



Wrap-up on Θ-trees

‣A Θ-tree for a set Ω of n activities is
– a balanced binary tree,
– whose leaf nodes correspond to the activities of Ω (sorted according to est),
– whose internal nodes have intermediate Δ and ect values, and
– whose root node has ectΩ.
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Operation Time complexity Spec

init({1..n}) O(n log n) Initialize an empty Θ-tree for the activites {1..n} 

insert(i) O(log n) Insert activity i into the Θ-tree

remove(i) O(log n) Remove activity i from the Θ-tree

ect O(1) Return ect of the set of activities in the Θ-tree



Overload Checker
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Overload Checking = a feasibility check

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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‣ ∀ Ω ⊆ T : (estΩ + dΩ  >  lctΩ   ↝  fail)

‣ If there exists a subset of activities that cannot be processed within its 
bounds, then no solution exists. 
Example:

‣ Take Ω = {A,B,C}: 
estΩ = 0, dΩ  = 5+5+6 = 16, lctΩ = 15, 0+16 > 15 ↝ fail.

Overload Checking = a feasibility check

This failure 
is not captured by the 
binary decomposition 

of Disjunctive.

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15



Overload Checking: time complexity? 

‣ ∀ Ω ⊆ T : (estΩ + dΩ  >  lctΩ   ↝  fail)

‣We need to enumerate all subsets Ω of T, hence 2|T| checks.

‣ It is not very practical to embed an algorithm of exponential time complexity 
in a propagator.

‣We need something else…
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‣ Left cut: LCut(T,j) = {i | i ∈ T & lcti ≤ lctj}. 

‣ Example: T = {A,B,C,D}

‣ LCut(T,A) =

‣ LCut(T,C) = 

‣ LCut(T,B) =          
‣ ⇒  fail

‣

Overload Checking: improve efficiency

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D
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‣ ∀ Ω ⊆ T : (estΩ + dΩ  >  lctΩ   ↝  fail)    

‣ can be reformulated as:

‣ ∀ j ∈ T : ectLCut(T,j) > lctLCut(T,j)  ↝  fail
‣ equivalent to 

‣ ∀ j ∈ T : ectLCut(T,j) > lctj   ↝  fail ⇒  fail

‣

Overload Checking: reformulation with LCut

What do we gain? Complexity?

We can now compute it efficiently 💡

by definition
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‣  ⇒  fail

‣ For example, take j = B, 
with LCut(T,B) = {A,B,C} = subset of activities ending by the end of B: 

‣ ectLCut(T,B) = 16 > lctLCut(T,B) = 15 = lctB (the red equality is true by definition).

Overload Checking: example with LCut

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A

C

B
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Overload checking rule: 
∀ j ∈ T : (ectLCut(T,j) > lctj   ↝  fail)

Overload Checker taking O(n2 log n) time

OverloadCheckInefficient(T={1..n}) {
for (j ← {1..n}) {
   Θ ← Θ-Tree.init({1..n}) // O(n log n) time 
   for (i ← LCut(T,j)) {
      Θ.insert(i) // O(log n) time
   }
   if (Θ.ect > lctj) { // O(1) time
     throw InconsistencyException
   }
 }
}

O(n2 log n) time



💡 Nested LCut
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1

2

3

4
1

2

3

4

‣ LCut(T,j) = {i | i ∈ T & lcti ≤ lctj}

Sort according to lct
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‣Observation: 
– Let T = {1..n} be ordered such that lct1 ≤ … ≤ lctn .
– Then LCut(T,1) ⊆ LCut(T,2) ⊆ … ⊆ LCut(T,n) = T: all activities are eventually inserted.

Overload Checker taking O(n log n) time

OverloadCheckEfficient(T={1..n}) {
  Θ ← Θ-Tree.init({1..n}) // O(n log n) time 
  T ← sortAZ([1..n],sortKey = lct) // O(n log n) time
  for (j ← T) {
   Θ.insert(j) // O(log n) time
   // invariant: Θ contains LCut(T,j)
   if (Θ.ect > lctj) { // O(1) time
     throw InconsistencyException
   }
  }
}



Overload Checking with Θ-Tree: an example
‣ Application of OverloadCheckEfficient algorithm on this example
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A

B

C
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Overload Checking with Θ-Tree: an example
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lctA = 14

estA = 0 
dA = 5 
ΔA = 0 

ectA = –∞

estB = 1 
dB = 5 
ΔB = 0 

ectB = –∞

estC = 3 
dC = 6 
ΔC = 0 

ectC = –∞

ΔAB = 0 
ectAB = –∞

ΔC = 0 
ectC = –∞

Δroot = 0 
ectroot = –∞

lctB = 15 lctC = 13

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Empty Θ-Tree initialization

OverloadCheckEfficient(T={1..n}) {
  T ← sortAZ([1..n],sortKey = lct)
  Θ ← Θ-Tree.init({1..n})
  for (j ← T) { // [C,A,B]
   Θ.insert(j)
   if (Θ.ect > lctj) {
     throw InconsistencyException
   }

  }
}



Overload Checking with Θ-Tree: an example
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estA = 0 
dA = 5 
ΔA = 0 

ectA = –∞

estB = 1 
dB = 5 
ΔB = 0 

ectB = –∞

estC = 3 
dC = 6 
ΔC = 6  0 

ectC = 9  –∞

ΔAB = 0 
ectAB = –∞

ΔC = 6  0 
ectC = 9 –∞

Δroot = 6  0 
ectroot = 9  –∞

lctA = 14 lctB = 15 lctC = 13

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Insertion of C

OverloadCheckEfficient(T={1..n}) {
  T ← sortAZ([1..n],sortKey = lct)
  Θ ← Θ-Tree.init({1..n})
  for (j ← T) { // [C,A,B]
   Θ.insert(j) // j = C
   if (Θ.ect > lctj) {
     throw InconsistencyException
   }

  }
}



Overload Checking with Θ-Tree: an example
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estA = 0 
dA = 5 
ΔA = 0 

ectA = –∞

estB = 1 
dB = 5 
ΔB = 0 

ectB = –∞

estC = 3 
dC = 6 
ΔC = 6 

ectC = 9

ΔAB = 0 
ectAB = –∞

ΔC = 6 
ectC = 9

Δroot = 6 
ectroot = 9 

lctA = 14 lctB = 15 lctC = 13

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Feasibility check

OverloadCheckEfficient(T={1..n}) {
  T ← sortAZ([1..n],sortKey = lct)
  Θ ← Θ-Tree.init({1..n})
  for (j ← T) { // [C,A,B]
   Θ.insert(j) // j = C
   if (Θ.ect > lctj) { // 9 > 13 ✅
     throw InconsistencyException
   }

  }
}



Overload Checking with Θ-Tree: an example
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estA = 0 
dA = 5 
ΔA = 5  0 

ectA = 5  –∞

estB = 1 
dB = 5 
ΔB = 0 

ectB = –∞

estC = 3 
dC = 6 
ΔC = 6 

ectC = 9

ΔAB = 5 0 
ectAB = 5 –∞

ΔC = 6 
ectC = 9 

Δroot = 11 6 
ectroot = 11 9 

lctA = 14 lctB = 15 lctC = 13

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Insertion of A

OverloadCheckEfficient(T={1..n}) {
  T ← sortAZ([1..n],sortKey = lct)
  Θ ← Θ-Tree.init({1..n})
  for (j ← T) { // [C,A,B]
   Θ.insert(j) // j = A
   if (Θ.ect > lctj) {
     throw InconsistencyException
   }

  }
}



Overload Checking with Θ-Tree: an example

59

estA = 0 
dA = 5 
ΔA = 5  

ectA = 5

estB = 1 
dB = 5 
ΔB = 0 

ectB = –∞

estC = 3 
dC = 6 
ΔC = 6 

ectC = 9 

ΔAB = 5 
ectAB = 5

ΔC = 6 
ectC = 9

Δroot = 11 
ectroot = 11

lctA = 14 lctB = 15 lctC = 13

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Feasibility check

OverloadCheckEfficient(T={1..n}) {
  T ← sortAZ([1..n],sortKey = lct)
  Θ ← Θ-Tree.init({1..n})
  for (j ← T) { // [C,A,B]
   Θ.insert(j) // j = A
   if (Θ.ect > lctj) { // 11 < 14 ✅
     throw InconsistencyException
   }

  }
}



Overload Checking with Θ-Tree: an example
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estA = 0 
dA = 5 
ΔA = 5 

ectA = 5

estB = 1 
dB = 5 
ΔB = 5 0 

ectB = 6 –∞

estC = 3 
dC = 6 
ΔC = 6 

ectC = 9

ΔAB = 10 5 
ectAB = 10 5

ΔC = 6 
ectC = 9

Δroot = 16 11 
ectroot = 16 11

lctA = 14 lctB = 15 lctC = 13

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Insertion of B

OverloadCheckEfficient(T={1..n}) {
  T ← sortAZ([1..n],sortKey = lct)
  Θ ← Θ-Tree.init({1..n})
  for (j ← T) { // [C,A,B]
   Θ.insert(j) // j = B
   if (Θ.ect > lctj) {
     throw InconsistencyException
   }

  }
}



Overload Checking with Θ-Tree: an example
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estA = 0 
dA = 5 
ΔA = 5 

ectA = 5

estB = 1 
dB = 5 
ΔB = 5 

ectB = 6

estC = 3 
dC = 6 
ΔC = 6 

ectC = 9

ΔAB = 10 
ectAB = 10

ΔC = 6 
ectC = 9

Δroot = 16  
ectroot = 16

lctA = 14 lctB = 15 lctC = 13

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Feasibility check

OverloadCheckEfficient(T={1..n}) {
  T ← sortAZ([1..n],sortKey = lct)
  Θ ← Θ-Tree.init({1..n})
  for (j ← T) { // [C,A,B]
   Θ.insert(j) // j = C
   if (Θ.ect > lctj) { // 16 > 15 ❌
     throw InconsistencyException
   }

  }
}



Detectable Precedences
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‣ Both A and B cannot be scheduled after C

‣ Therefore they must both be scheduled before

Detectable Precedences = a filtering rule

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
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‣ Both A and B must end before C starts is denoted by {A,B} ≪ C

‣ By taking the earliest start of A and (duration A + duration B), 
we can filter (push) the start of C to 10

Detectable Precedences = a filtering rule

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17



65

‣ A precedence  j ≪ i  is detectable  if  esti + di > lctj – dj

๏  

๏that is if  ecti > lstj  then activity j cannot start after activity i ends.

๏Set of all activities with detectable precedence before i: 
DPrec(T,i) = { j | j ∈ T \ {i}  &  esti + di > lctj – dj }.

‣ Filtering: esti ← max(esti , ectDPrec(T,i)), for all i ∈ T.

Detectable Precedences = a filtering rule

j

i

lctj – dj

esti + di



Nested sets?

‣ DPrec’(T,i) = { j : j ∈ T  &  esti + di > lctj – dj }. 
Note that activity i is sometimes in DPrec’(T,i).


‣ Hence: DPrec(T,i) = DPrec’(T,i) \ {i}.


‣ In what order should the activities i be considered to have nested DPrec’(T,i) sets?

66



Order on i to have nested DPrec’(T,i) sets

1

2

3

4

A

B

C

D

esti+di

lctj-dj

…

…

DPrec’

67
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‣ Let T = {1..n} be ordered such that 


• est1 + d1 ≤ est2 + d2 ≤ … ≤ estn + dn 


• Then: DPrec’(T,1) ⊆ DPrec’(T,2) ⊆ … ⊆ DPrec’(T,n)


‣ This is exactly what we are looking for: 
an order to consider the activities i of T such that the detectable precedence set is growing 
monotonically, as this is very important for computing all ectDPrec(T,i) efficiently & incrementally 
with a Θ-tree.


‣ Note that DPrec’(T,n) is not necessarily T: 
not necessarily all activities are eventually inserted into the initialized Θ-tree.

Iterating on activities



Detectable Precedences: O(n log n) time

69

DetectablePrecedence(T={1..n}) {
  Tlst ← sortAZ([1..n],sortKey = lct-d) // O(n log n)
  Tect ← sortAZ([1..n],sortKey = est+d) // O(n log n)
  ite ← iterator(Tlst)
 j ← ite.next() // candidate precedence of i
  Θ ← Θ-Tree.init({1..n}) // O(n log n) time
  for (i ← Tect) {
    while (esti+di > lctj-dj) {
       Θ.insert(j) // O(log n) time
       if (ite.hasNext()) {j ← ite.next()} else {break}
    }
   est’i ← max(esti, ectΘ\i) // O(log n) time
  }
  esti ← est’i, ∀i∈T
}

This is executed at most n times

Because Θ contains DPrec’(T,i) and not DPrec(T,i): 
Θ.remove(i), use Θ.ect for max, Θ.insert(i).

1

2

3

4

A

B

C

D

ect

lst

…

…

DPrec’



Detectable precedence filtering with Θ-Tree, an example
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SortingA

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

DetectablePrecedence(T={1..n}) {
  Tlst ← sortAZ([1..n],sortKey = lct-d) // [A,B,C]
  Tect ← sortAZ([1..n],sortKey = est+d) // [A,B,C]
  ite ← iterator(Tlst)
 j ← ite.next() // candidate precedence of i

  Θ ← Θ-Tree.init({1..n})
  for (i ← Tect) {
    while (esti+di > lctj-dj) {
       Θ.insert(j) 
       if (ite.hasNext()) {j ← ite.next()} else {break}
    }
   est’i ← max(esti, ectΘ\i) 

  }
  esti ← est’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170

C

C

B

A

esti + di

lctj − dj



Detectable precedence filtering with Θ-Tree, an example
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 Θ-Tree initialiation

estA = 0 
dA = 5 
ΔA = 0 

ectA = –∞

estB = 1 
dB = 5 
ΔB = 0 

ectB = –∞

estC = 3 
dC = 2 
ΔC = 0 

ectC = –∞

ΔAB = 0 
ectAB = –∞

ΔC = 0 
ectC = –∞

Δroot = 0 
ectroot = –∞

DetectablePrecedence(T={1..n}) {
  Tlst ← sortAZ([1..n],sortKey = lct-d) // [A, B, C]
  Tect ← sortAZ([1..n],sortKey = est+d) // [A, B, C]
  ite ← iterator(Tlst)
 j ← ite.next() // candidate precedence of i

  Θ ← Θ-Tree.init({1..n})
  for (i ← Tect) {
    while (esti+di > lctj-dj) {
       Θ.insert(j) 
       if (ite.hasNext()) {j ← ite.next()} else {break}
    }
   est’i ← max(esti, ectΘ\i) 

  }
  esti ← est’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170

C

C

B

A

esti + di

lctj − dj



Detectable precedence filtering with Θ-Tree, an example
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First iteration: A is considered

DetectablePrecedence(T={1..n}) {
  Tlst ← sortAZ([1..n],sortKey = lct-d) // [A, B, C]
  Tect ← sortAZ([1..n],sortKey = est+d) // [A, B, C]
  ite ← iterator(Tlst)
 j ← ite.next() // candidate precedence of i

  Θ ← Θ-Tree.init({1..n}) 
  for (i ← Tect) { // i ← A
    while (esti+di > lctj-dj) {
       Θ.insert(j)
       if (ite.hasNext()) {j ← ite.next()} else {break}
    }
   est’i ← max(esti, ectΘ\i) 

  }
  esti ← est’i, ∀i∈T
}

estA = 0 
dA = 5 
ΔA = 0 

ectA = –∞

estB = 1 
dB = 5 
ΔB = 0 

ectB = –∞

estC = 3 
dC = 2 
ΔC = 0 

ectC = –∞

ΔAB = 0 
ectAB = –∞

ΔC = 0 
ectC = –∞

Δroot = 0 
ectroot = –∞

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170

C

C

B

A



Detectable precedence filtering with Θ-Tree, an example
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First iteration: A is considered
Nothing to 

insert into the Θ-tree

DetectablePrecedence(T={1..n}) {
  Tlst ← sortAZ([1..n],sortKey = lct-d) // [A, B, C]
  Tect ← sortAZ([1..n],sortKey = est+d) // [A, B, C]
  ite ← iterator(Tlst)
 j ← ite.next() // candidate precedence of i

  Θ ← Θ-Tree.init({1..n}) 
  for (i ← Tect) { // i ← A
    while (esti+di > lctj-dj) {
       Θ.insert(j)
       if (ite.hasNext()) {j ← ite.next()} else {break}
    }
   est’i ← max(esti, ectΘ\i)

  }
  esti ← est’i, ∀i∈T
}

estA = 0 
dA = 5 
ΔA = 0 

ectA = –∞

estB = 1 
dB = 5 
ΔB = 0 

ectB = –∞

estC = 3 
dC = 2 
ΔC = 0 

ectC = –∞

ΔAB = 0 
ectAB = –∞

ΔC = 0 
ectC = –∞

Δroot = 0 
ectroot = –∞

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170

C

C

B

A



Detectable precedence filtering with Θ-Tree, an example
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Second iteration: B is considered

DetectablePrecedence(T={1..n}) {
  Tlst ← sortAZ([1..n],sortKey = lct-d) // [A, B, C]
  Tect ← sortAZ([1..n],sortKey = est+d) // [A, B, C]
  ite ← iterator(Tlst)
 j ← ite.next() // candidate precedence of i

  Θ ← Θ-Tree.init({1..n}) 
  for (i ← Tect) { // i ← B
    while (esti+di > lctj-dj) {
       Θ.insert(j) 
       if (ite.hasNext()) {j ← ite.next()} else {break}
    }
   est’i ← max(esti, ectΘ\i) 

  }
  esti ← est’i, ∀i∈T
}

estA = 0 
dA = 5 
ΔA = 0 

ectA = –∞

estB = 1 
dB = 5 
ΔB = 0 

ectB = –∞

estC = 3 
dC = 2 
ΔC = 0 

ectC = –∞

ΔAB = 0 
ectAB = –∞

ΔC = 0 
ectC = –∞

Δroot = 0 
ectroot = –∞

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170

C

C

B

A



Detectable precedence filtering with Θ-Tree, an example
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Second iteration: B is considered
Nothing to insert 
into the Θ-tree

DetectablePrecedence(T={1..n}) {
  Tlst ← sortAZ([1..n],sortKey = lct-d) // [A, B, C]
  Tect ← sortAZ([1..n],sortKey = est+d) // [A, B, C]
  ite ← iterator(Tlst)
 j ← ite.next() // candidate precedence of i

  Θ ← Θ-Tree.init({1..n}) 
  for (i ← Tect) { // i ← B
    while (esti+di > lctj-dj) {
       Θ.insert(j) 
       if (ite.hasNext()) {j ← ite.next()} else {break}
    }
   est’i ← max(esti, ectΘ\i)

  }
  esti ← est’i, ∀i∈T
}

estA = 0 
dA = 5 
ΔA = 0 

ectA = –∞

estB = 1 
dB = 5 
ΔB = 0 

ectB = –∞

estC = 3 
dC = 2 
ΔC = 0 

ectC = –∞

ΔAB = 0 
ectAB = –∞

ΔC = 0 
ectC = –∞

Δroot = 0 
ectroot = –∞

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170

C

C

B

A



Detectable precedence filtering with Θ-Tree, an example
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Third iteration: C is considered

DetectablePrecedence(T={1..n}) {
  Tlst ← sortAZ([1..n],sortKey = lct-d) // [A, B, C]
  Tect ← sortAZ([1..n],sortKey = est+d) // [A, B, C]
  ite ← iterator(Tlst)
 j ← ite.next() // candidate precedence of i

  Θ ← Θ-Tree.init({1..n}) 
  for (i ← Tect) { // i ← C
    while (esti+di > lctj-dj) {
       Θ.insert(j) 
       if (ite.hasNext()) {j ← ite.next()} else {break}
    }
   est’i ← max(esti, ectΘ\i) 

  }
  esti ← est’i, ∀i∈T
}

estA = 0 
dA = 5 
ΔA = 0 

ectA = –∞

estB = 1 
dB = 5 
ΔB = 0 

ectB = –∞

estC = 3 
dC = 2 
ΔC = 0 

ectC = –∞

ΔAB = 0 
ectAB = –∞

ΔC = 0 
ectC = –∞

Δroot = 0 
ectroot = –∞

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170

C

C

B

A



Detectable precedence filtering with Θ-Tree, an example
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Third iteration: C is considered

DetectablePrecedence(T={1..n}) {
  Tlst ← sortAZ([1..n],sortKey = lct-d) // [A, B, C]
  Tect ← sortAZ([1..n],sortKey = est+d) // [A, B, C]
  ite ← iterator(Tlst)
 j ← ite.next() // candidate precedence of i

  Θ ← Θ-Tree.init({1..n}) 
  for (i ← Tect) { // i ← C
    while (esti+di > lctj-dj) {
       Θ.insert(j)
       if (ite.hasNext()) {j ← ite.next()} else {break}
    }
   est’i ← max(esti, ectΘ\i) 

  }
  esti ← est’i, ∀i∈T
}

estA = 0 
dA = 5 
ΔA = 0 

ectA = –∞

estB = 1 
dB = 5 
ΔB = 0 

ectB = –∞

estC = 3 
dC = 2 
ΔC = 0 

ectC = –∞

ΔAB = 0 
ectAB = –∞

ΔC = 0 
ectC = –∞

Δroot = 0 
ectroot = –∞

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170

C

C

B

A

A and B will be 
inserted  

into the Θ-tree

B

A



Detectable precedence filtering with Θ-Tree, an example
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Insertion of A

estA = 0 
dA = 5 0 
ΔA = 5 0 

ectA = 5 –∞

estB = 1 
dB = 5 
ΔB = 0 

ectB = –∞

estC = 3 
dC = 2 
ΔC = 0 

ectC = –∞

ΔAB = 5 0 
ectAB = 5 –∞

ΔC = 0 
ectC = –∞

Δroot = 5 0 
ectroot = 5 –∞

DetectablePrecedence(T={1..n}) {
  Tlst ← sortAZ([1..n],sortKey = lct-d) // [A, B, C]
  Tect ← sortAZ([1..n],sortKey = est+d) // [A, B, C]
  ite ← iterator(Tlst)
 j ← ite.next() // candidate precedence of i

  Θ ← Θ-Tree.init({1..n}) 
  for (i ← Tect) { // i ← C
    while (esti+di > lctj-dj) {
       Θ.insert(j) 
       if (ite.hasNext()) {j ← ite.next()} else {break}
    }
   est’i ← max(esti, ectΘ\i) 

  }
  esti ← est’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170

C

C

B

A

A and B will be 
inserted  

into the Θ-tree

B

A



Detectable precedence filtering with Θ-Tree, an example
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Insertion of B

estA = 0 
dA = 5  
ΔA = 5 

ectA = 5 

estB = 1 
dB = 5 0 
ΔB = 5 0 

ectB = 6 –∞

estC = 3 
dC = 2 
ΔC = 0 

ectC = –∞

ΔAB = 10 5 
ectAB = 10 5 

ΔC = 0 
ectC = –∞

Δroot = 10 5  
ectroot = 10 5

DetectablePrecedence(T={1..n}) {
  Tlst ← sortAZ([1..n],sortKey = lct-d) // [A, B, C]
  Tect ← sortAZ([1..n],sortKey = est+d) // [A, B, C]
  ite ← iterator(Tlst)
 j ← ite.next() // candidate precedence of i

  Θ ← Θ-Tree.init({1..n}) 
  for (i ← Tect) { // i ← C
    while (esti+di > lctj-dj) {
       Θ.insert(j)
       if (ite.hasNext()) {j ← ite.next()} else {break}
    }
   est’i ← max(esti, ectΘ\i)

  }
  esti ← est’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170

C

C

B

A

A and B will be 
inserted  

into the Θ-tree

B

A



Detectable precedence filtering with Θ-Tree, an example
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estA = 0 
dA = 5  
ΔA = 5 

estB = 1 
dB = 5 
ΔB = 5 

estC = 3 
dC = 2 
ΔC = 0 

ΔAB = 10  
ectAB = 10  

ΔC = 0 
ectC = –∞

Δroot = 10   
ectroot = 10

DetectablePrecedence(T={1..n}) {
  Tlst ← sortAZ([1..n],sortKey = lct-d) // [A, B, C]
  Tect ← sortAZ([1..n],sortKey = est+d) // [A, B, C]
  ite ← iterator(Tlst)
 j ← ite.next() // candidate precedence of i

  Θ ← Θ-Tree.init({1..n}) 
  for (i ← Tect) { // i ← C
    while (esti+di > lctj-dj) {
       Θ.insert(j) 
       if (ite.hasNext()) {j ← ite.next()} else {break}
    }
   est’i ← max(esti, ectΘ\i)

  }
  esti ← est’i, ∀i∈T
}

 estC = est’C = 10

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170

C

C

B

A

A and B will be 
inserted  

into the Θ-tree

B

A



Not-Last

81



Not-Last = another filtering rule

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

It is impossible to have {A,B} ≪ C, 
so C must end before A or B (or both) 

‣ Activity C cannot be scheduled after (A and B):

82



Not-Last = another filtering rule

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Take the minimum of the two cases: 
lctC ← min(lctC , max{lctB–dB, lctA–dA}).

‣ Activity C cannot be scheduled after (A and B)

83
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‣ ∀Ω ⊂ T non-empty strict subset of T,  ∀i ∈ T\Ω: 
estΩ + dΩ > lcti – di    ↝   lcti ← min(lcti , max {lctj – dj | j ∈Ω})         (NL)


‣ Example: For Ω = {A,B}, activity i = C cannot start last:


‣ Again, we need to find a way to enumerate the Ω in a nested way.

Not-Last filtering formally defined

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

It is impossible to have {A,B} ≪ C, 
so C must end before A or B (or both): 
lctC ← min(lctC , max{lctB–dB, lctA–dA}).
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‣ ∀Ω ⊂ T non-empty strict subset of T,  ∀i ∈ T\Ω: 
estΩ + dΩ > lcti – di    ↝   lcti ← min(lcti , max {lctj – dj | j ∈Ω})      (NL)


‣ Example: For Ω = {A,B}, activity i = C cannot start last:


‣ Again, we need to find a way to enumerate the Ω in a nested way.

Not-Last filtering formally defined

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

It is impossible to have {A,B} ≪ C, 
so C must end before A or B (or both): 
lctC ← min(lctC , max{lctB–dB, lctA–dA}).
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‣ estΩ + dΩ  > lcti – di    ↝    lcti ← min(lcti , max {lctj – dj | j ∈ Ω})    (NL)


‣Observation: If there is a subset Ω for which this rule actually filters, 
then it is a subset of NLSet(T,i) = { j | j ∈ T \ {i}  &  lctj – dj < lcti }.

Not-Last Rule

C

i

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

B

A

A is not in NLSet(T,i), but B and C are in it!
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‣ estΩ + dΩ  > lcti – di   ↝   lcti ← min(lcti , max {lctj – dj | j ∈ Ω})                (NL)


‣Observation: If there is a subset Ω for which this rule actually filters, 
then it is a subset of NLSet(T,i) = { j | j ∈ T \ {i}  &  lctj – dj < lcti }.


‣Does there exist a subset Ω ⊆ NLSet(T,i) for which 
the detection part of the rule (namely estΩ + dΩ  > lcti – di) also holds?


‣Such a subset exists if and only if  
max {estΩ’ + dΩ’ | Ω’ ⊆ NLSet(T,i)}  >  lcti – di .

Not-Last Rule

The left-hand side is the definition of ectNLSet(T,i) : 
this probably means that a Θ-tree will be useful…
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Let us make this more efficient!


‣The existence of a subset Ω ⊆ NLSet(T,i) triggering the rule can be tested as 
             ectNLSet(T,i) > lcti – di


‣The problem is that we then do not have a subset Ω for filtering (we only test for the existence 
of it to trigger the rule). 


‣But do we really need it? 
No! if we accept to relax the filtering: 
             max {lctj – dj | j ∈ Ω} ≤ max {lctj – dj | j ∈ NLSet(T,i)} < lcti

Not-Last Rule

Because Ω ⊆ NLSet(T,i): 
the advantage of this relaxation 

is that we do not need a Ω!



Weaker Not-Last Rule

‣ estΩ + dΩ  > lcti – di   ↝  lcti ← min(lcti , max {lctj – dj | j ∈ Ω})    (NL)


‣ ectNLSet(T,i) > lcti – di   ↝  lcti ← max {lctj – dj  | j ∈ NLSet(T,i)}      (NL’)


‣ Rule NL’ may filter less than rule NL, but the fixpoint is the same.
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Not-Last: Implementation

‣Recall: NLSet(T,i) = { j | j ∈ T \ {i}  &  lctj – dj < lcti }.


‣We are looking for an order on i so as to have nested sets.


‣Let NLSet’(T,i) = { j | j ∈ T  &  lctj – dj < lcti }. 
Note that i is always in NLSet’(T,i).


‣ In what order should we consider activities to have nested NLSet’(T,i) sets?
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Not-Last: Filtering Algorithm

1

2

3

4

A

B

C

D

lcti

lctj-dj

…

…

NLSet’
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Not-Last: Implementation

‣Let NLSet’(T,i) = { j | j ∈ T  &  lctj – dj < lcti }. 
Note that i is always in NLSet’(T,i).


‣ Let T = {1..n} be ordered such that lct1 ≤ lct2 ≤ … ≤ lctn : 
then NLSet’(T,1) ⊆ NLSet’(T,2) ⊆ … ⊆ NLSet’(T,n) = T: 
all activities are eventually inserted into the initialised Θ-tree.


‣ Now we have a way to compute the NLSet(T,i) incrementally when using a Θ-tree.
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Not-Last: Filtering Algorithm
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NotLast(T={1..n}) {
  lct’i ← lcti, ∀i∈T 
  Tlst ← sortAZ([1..n],sortKey = lct-d) // O(n log n) time
  Tlct ← sortAZ([1..n],sortKey = lct) // O(n log n) time
  ite ← iterator(Tlst)
 k ← ite.next()
 j ← -1
  Θ ← Θ-Tree.init({1..n}) // O(n log n) time
  for (i ← Tlct) {
    while (lcti > lctk-dk) {
       Θ.insert(k) // O(log n) time
       j ← k // lctj-dj = max {lctk - dk : k ∈ NLSet(T,i)}
       k ← ite.next()
    }
    if (ectΘ\i > lcti-di) { // O(log n) time
       lct’i ← min(lcti, lctj-dj)
    }
 }
 lcti ← lct’i, ∀i∈T
} Θ-tree contains all NLSet’(T,i).



Not last filtering with Θ-Tree, an example
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Sorting
A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

NotLast(T={1..n}) {
  lct’i ← lcti, ∀i∈T 
  Tlst ← sortAZ([1..n],sortKey = lct-d) // [A, C, B]
  Tlct ← sortAZ([1..n],sortKey = lct) // [C, A, B]
  ite ← iterator(Tlst)
 k ← ite.next() // k = A
 j ← -1

  Θ ← Θ-Tree.init({1..n})
  ...
  ...
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C

C

B

A

0

lctk − dk



Not last filtering with Θ-Tree, an example
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NotLast(T={1..n}) {
  lct’i ← lcti, ∀i∈T 
  Tlst ← sortAZ([1..n],sortKey = lct-d) // [A, C, B]
  Tlct ← sortAZ([1..n],sortKey = lct) // [C, A, B]
  ite ← iterator(Tlst)
 k ← ite.next() // k = A
 j ← -1

  Θ ← Θ-Tree.init({1..n}) 
  ...
  ...
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C

C

B

A

0

 Θ-Tree initialisation

estA = 0 
dA = 5 
ΔA = 0 

ectA = –∞

estB = 1 
dB = 5 
ΔB = 0 

ectB = –∞

estC = 3 
dC = 4 
ΔC = 0 

ectC = –∞

ΔAB = 0 
ectAB = –∞

ΔC = 0 
ectC = –∞

Δroot = 0 
ectroot = –∞

lctk − dk



Not last filtering with Θ-Tree, an example
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NotLast(T={1..n}) {
  ...
  ...
  Θ ← Θ-Tree.init({1..n})
  for (i ← Tlct) { // i ← C
    while (lcti > lctk-dk) {
       Θ.insert(k) // O(log n) time
       j ← k // lctj-dj = max {lctk - dk : k ∈ NLSet(T,i)}
       k ← ite.next()
    }
    if (ectΘ\i > lcti-di) { // O(log n) time
       lct’i ← min(lcti, lctj-dj)
    }
 }
 lcti ← lct’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C

C

B

A

0

First iteration: C is considered

estA = 0 
dA = 5 
ΔA = 0 

ectA = –∞

estB = 1 
dB = 5 
ΔB = 0 

ectB = –∞

estC = 3 
dC = 4 
ΔC = 0 

ectC = –∞

ΔAB = 0 
ectAB = –∞

ΔC = 0 
ectC = –∞

Δroot = 0 
ectroot = –∞

lctk − dk



Not last filtering with Θ-Tree, an example
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NotLast(T={1..n}) {
  ...
  ...
  Θ ← Θ-Tree.init({1..n})
  for (i ← Tlct) { // i ← C
    while (lcti > lctk-dk) {
       Θ.insert(k) // O(log n) time
       j ← k // lctj-dj = max {lctk - dk : k ∈ NLSet(T,i)}
       k ← ite.next()
    }
    if (ectΘ\i > lcti-di) { // O(log n) time
       lct’i ← min(lcti, lctj-dj)
    }
 }
 lcti ← lct’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C

C

B

A

0

First iteration: C is considered

estA = 0 
dA = 5 
ΔA = 0 

ectA = –∞

estB = 1 
dB = 5 
ΔB = 0 

ectB = –∞

estC = 3 
dC = 4 
ΔC = 0 

ectC = –∞

ΔAB = 0 
ectAB = –∞

ΔC = 0 
ectC = –∞

Δroot = 0 
ectroot = –∞

A, C, B inserted  
in Θ-tree, they all belong to 

NLSet’(C)

lctk − dk



Not last filtering with Θ-Tree, an example
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NotLast(T={1..n}) {
  ...
  ...
  Θ ← Θ-Tree.init({1..n})
  for (i ← Tlct) { // i ← C
    while (lcti > lctk-dk) { // k = A
       Θ.insert(k) // O(log n) time
       j ← k // lctj-dj = max {lctk - dk : k ∈ NLSet(T,i)}
       k ← ite.next()
    }
    if (ectΘ\i > lcti-di) { // O(log n) time
       lct’i ← min(lcti, lctj-dj)
    }
 }
 lcti ← lct’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C

C

B

A

0

Insertion of A

estB = 1 
dB = 5 
ΔB = 0 

ectB = –∞

estC = 3 
dC = 4 
ΔC = 0 

ectC = –∞

ΔC = 0 
ectC = –∞

A,C, and B will 
be inserted  

in the Θ-tree

estA = 0 
dA = 5 
ΔA = 5 0 

ectA = 5 –∞

ΔAB = 5 0 
ectAB = 5 –∞

Δroot = 5 0 
ectroot = 5 –∞

lctk − dk



Not last filtering with Θ-Tree, an example
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NotLast(T={1..n}) {
  ...
  ...
  Θ ← Θ-Tree.init({1..n})
  for (i ← Tlct) { // i ← C
    while (lcti > lctk-dk) { // k = C
       Θ.insert(k) // O(log n) time
       j ← k // lctj-dj = max {lctk - dk : k ∈ NLSet(T,i)}
       k ← ite.next()
    }
    if (ectΘ\i > lcti-di) { // O(log n) time
       lct’i ← min(lcti, lctj-dj)
    }
 }
 lcti ← lct’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C

C

B

A

0

Insertion of C

estB = 1 
dB = 5 
ΔB = 0 

ectB = –∞

estC = 3 
dC = 4 
ΔC = 4 0 

ectC = 7 –∞

ΔC = 4 0 
ectC = 7 –∞

A,C, and B will 
be inserted  

in the Θ-tree

estA = 0 
dA = 5 
ΔA = 5 

ectA = 5

ΔAB = 5 
ectAB = 5

Δroot = 9 5 
ectroot = 9 5

lctk − dk



Not last filtering with Θ-Tree, an example
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NotLast(T={1..n}) {
  ...
  ...
  Θ ← Θ-Tree.init({1..n})
  for (i ← Tlct) { // i ← C
    while (lcti > lctk-dk) { // k = B
       Θ.insert(k) // O(log n) time
       j ← k // lctj-dj = max {lctk - dk : k ∈ NLSet(T,i)}
       k ← ite.next()
    }
    if (ectΘ\i > lcti-di) { // O(log n) time
       lct’i ← min(lcti, lctj-dj)
    }
 }
 lcti ← lct’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C

C

B

A

0

Insertion of B

estB = 1 
dB = 5 
ΔB = 5 0 

ectB = 6 –∞

estC = 3 
dC = 4 
ΔC = 4 

ectC = 7

ΔC = 4 
ectC = 7

A,C, and B will 
be inserted  

in the Θ-tree

estA = 0 
dA = 5 
ΔA = 5 

ectA = 5

ΔAB = 10 5 
ectAB = 10 5

Δroot = 14 9 
ectroot = 14 9

lctk − dk



Not last filtering with Θ-Tree, an example
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NotLast(T={1..n}) {
  ...
  ...
  Θ ← Θ-Tree.init({1..n})
  for (i ← Tlct) { // i ← C
    while (lcti > lctk-dk) { // k = B
       Θ.insert(k) // O(log n) time
       j ← k // lctj-dj = max {lctk - dk : k ∈ NLSet(T,i)}
       k ← ite.next()
    }
    if (ectΘ\i > lcti-di) { // ectΘ\C = 10 and lctC-dC = 9
       lct’i ← min(lcti, lctj-dj) 
    }
 }
 lcti ← lct’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C

C

B

A

0

estB = 1 
dB = 5 
ΔB = 5 

ectB = 6

estC = 3 
dC = 4 
ΔC = 0 4 

ectC = -∞ 7

ΔC = 0 4 
ectC = –∞ 7

estA = 0 
dA = 5 
ΔA = 5 

ectA = 5

ΔAB = 10 
ectAB = 10

Δroot = 10 14 
ectroot = 10 14

Θ \ {C}

lct’C = min(lctC, lctB-dB) = 10

lctk − dk



Not last filtering with Θ-Tree, an example
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NotLast(T={1..n}) {
  ...
  ...
  Θ ← Θ-Tree.init({1..n})
  for (i ← Tlct) { // i ← A
    while (lcti > lctk-dk) {
       Θ.insert(k) // O(log n) time
       j ← k // lctj-dj = max {lctk - dk : k ∈ NLSet(T,i)}
       k ← ite.next()
    }
    if (ectΘ\i > lcti-di) { // O(log n) time
       lct’i ← min(lcti, lctj-dj)
    }
 }
 lcti ← lct’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C

C

B

A

0

Second iteration: A is considered

estB = 1 
dB = 5 
ΔB = 5 

ectB = 6

estC = 3 
dC = 4 
ΔC = 4 

ectC = 7

ΔC = 4 
ectC = 7

estA = 0 
dA = 5 
ΔA = 5 

ectA = 5

ΔAB = 10 
ectAB = 10

Δroot = 14 
ectroot = 14

All activities are already 
in the Θ-Tree

lctk − dk



Not last filtering with Θ-Tree, an example
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NotLast(T={1..n}) {
  ...
  ...
  Θ ← Θ-Tree.init({1..n})
  for (i ← Tlct) { // i ← A
    while (lcti > lctk-dk) {
       Θ.insert(k) // O(log n) time
       j ← k // lctj-dj = max {lctk - dk : k ∈ NLSet(T,i)}
       k ← ite.next()
    }
    if (ectΘ\i > lcti-di) { // ectΘ\A = 10 and lctA-dA = 9
       lct’i ← min(lcti, lctj-dj)
    }
 }
 lcti ← lct’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C

C

B

A

0

estB = 1 
dB = 5 
ΔB = 5 

ectB = 6 

estC = 3 
dC = 4 
ΔC = 4 

ectC = 7

ΔC = 4 
ectC = 7

estA = 0 
dA = 5 
ΔA = 0 5 

ectA = –∞ 5

ΔAB = 5 10 
ectAB = 6 10

Δroot = 9 14 
ectroot = 10 14

Θ \ {A}

lct’A = min(lctA, lctB-dB) = 10

lctk − dk
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NotLast(T={1..n}) {
  ...
  ...
  Θ ← Θ-Tree.init({1..n})
  for (i ← Tlct) { // i ← B
    while (lcti > lctk-dk) {
       Θ.insert(k) // O(log n) time
       j ← k // lctj-dj = max {lctk - dk : k ∈ NLSet(T,i)}
       k ← ite.next()
    }
    if (ectΘ\i > lcti-di) { // O(log n) time
       lct’i ← min(lcti, lctj-dj)
    }
 }
 lcti ← lct’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C

C

B

A

0

Third iteration: B is considered

estB = 1 
dB = 5 
ΔB = 5 

ectB = 6

estC = 3 
dC = 4 
ΔC = 4 

ectC = 7

ΔC = 4 
ectC = 7

estA = 0 
dA = 5 
ΔA = 5 

ectA = 5

ΔAB = 10 
ectAB = 10

Δroot = 14 
ectroot = 14

All activities are already 
in the Θ-Tree

lctk − dk
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NotLast(T={1..n}) {
  ...
  ...
  Θ ← Θ-Tree.init({1..n})
  for (i ← Tlct) { // i ← B
    while (lcti > lctk-dk) {
       Θ.insert(k) // O(log n) time
       j ← k // lctj-dj = max {lctk - dk : k ∈ NLSet(T,i)}
       k ← ite.next()
    }
    if (ectΘ\i > lcti-di) { // ectΘ\B = 9 and lctB-dB = 10
       lct’i ← min(lcti, lctj-dj)
    }
 }
 lcti ← lct’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C

C

B

A

0

estB = 1 
dB = 5 
ΔB = 0 5 

ectB = -∞ 6 

estC = 3 
dC = 4 
ΔC = 4 

ectC = 7

ΔC = 4 
ectC = 7

estA = 0 
dA = 5 
ΔA = 5 

ectA = 5

ΔAB = 5 10 
ectAB = 5 10

Δroot = 9 14 
ectroot = 9 14

Θ \ {B}

lctk − dk
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NotLast(T={1..n}) {
  ...
  ...
  Θ ← Θ-Tree.init({1..n})
  for (i ← Tlct) { // i ← B
    while (lcti > lctk-dk) {
       Θ.insert(k) // O(log n) time
       j ← k // lctj-dj = max {lctΩ - dΩ : Ω ⊆ NLSet(T,i)}
       k ← ite.next()
    }
    if (ectΘ\i > lcti-di) { // ectΘ\B = 9 and lctB-dB = 10
       lct’i ← min(lcti, lctj-dj)
    }
 }
 lcti ← lct’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C

C

B

A

0

lctC = 10
lctA = 10
lctB = 15

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lctk − dk
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NotLast(T={1..n}) {
  ...
  ...
  Θ ← Θ-Tree.init({1..n})
  for (i ← Tlct) { // i ← B
    while (lcti > lctk-dk) {
       Θ.insert(k) // O(log n) time
       j ← k // lctj-dj = max {lctΩ - dΩ : Ω ⊆ NLSet(T,i)}
       k ← ite.next()
    }
    if (ectΘ\i > lcti-di) { // ectΘ\B = 9 and lctB-dB = 10
       lct’i ← min(lcti, lctj-dj)
    }
 }
 lcti ← lct’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C

C

B

A

0

lctC = 10
lctA = 10
lctB = 15

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lctk − dk



Edge Finder
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Edge Finding

B

C

D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

impossible to schedule {A,B,C,D} 
before lct{BCD} 

thus we must have {B,C,D} ≪ A

A

‣ ∀Ω⊂T, ∀i ∈ T\Ω   = arbitrary non-empty subset of T


‣ estΩ∪i  + dΩ∪i  > lctΩ    ⇒   Ω ≪ i   ↝   esti ←max {esti, ectΩ}   (EF)


‣ i must be scheduled after the set Ω
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‣Reformulation of EF for easier implementation

∀ j ∈ T, ∀ i ∈ T \ LCut(T,j): 

             ectLCut(T,j)∪i  > lctj  ⇒ LCut(T,j) ≪ i  

                                       ↝ esti ← max {esti, ectLCut(T,j)}   (EF’) 

‣ Implementation using Θ-tree considering j and i wrt LCut(T,j)
• Θ = LCut(T,j)
• Θ-Tree.insert(i), check if  ectΘ >lctj 
• Θ.remove(i)

 Edge Finding

LCut(T,j) = {i | i ∈ T & lcti ≤ lctj}

O(log n) for testing one (i,j) 
O(n2 log n) overall => too slow! 



111

‣ect(Θ-Λ) = max({ectΘ},{ectΘ∪i : i ∈ Λ}) 
• earliest completion time if at most one gray activity used

‣New values stored in the nodes (in addition to Δv & ectv)
• Δv  = max {pΘ’ | Θ’⊆Leaves(v) & |Θ’∩ Λ| ≤ 1}
• ectv = ectLeaves(v) = max {estΘ’+pΘ’ | Θ’⊆Leaves(v) & |Θ’∩ Λ| ≤ 1}

‣Update rule
• Δv  = max {Δleft(v)+Δright(v),Δleft(v)+Δright(v)}
• ectv = max {ectright(v),ectleft(v)+Δright(v),ectleft(v)+Δright(v)}

Θ-Λ-Tree = generalization of Θ-Tree
Θ and Λ disjoint sets: Θ ∩ Λ = ∅white gray



Example

esta = 0 
da = 5 
Δa = 5 

ecta = 5  

Δa = 5 
ecta = 5 

estb = 25 
db = 9 
Δb = 9 

ectb = 34 
Δb = 9 

ectb = 34  

estc = 30 
dc = 5 
Δc = 0 

ectc = -∞ 
Δc = 5 

ectc = 35  

estd = 32 
dd = 10 
Δd = 10 

ectd = 42 
Δd = 10 

ectd = 42  

Δ = 11 
ect = 34 
Δ = 11 

ect = 34  

Δ = 10 
ect = 42 
Δ = 15 

ect = 45  

Δ = 21 
ect = 44 
Δ = 26 

ect = 49 

resp

‣Θ-Λ-Tree: Θ={a,b,d} Λ={c}
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Responsible Activities

‣For each node v we can also compute the gray activity responsible for Δv or 
ectv
‣Leaf nodes:
• respΔ(i) = i if i is gray, undef otherwise
• respect(i) = i if i is gray, undef otherwise

‣ Internal nodes:
• respΔ(v) = respΔ(left(v)) if Δv = Δleft(v)+Δright(v),   

                          respΔ(right(v)) otherwise
• respect(v) = respect(right(v))  if ectv = ectright(v)

                                       respect(left(v))    if ectv = ectleft(v)+Δright(v)

                                       respΔ(right(v))  if ectv = ectleft(v)+Δright(v)
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Complexities



Edge Finding: The big picture

4

3

2

1

lcti

Θ

Λ

j=

while (ect(Θ-Λ) > lctj) {
  i ← respect(Θ-Λ)
  esti ← max{esti,ectΘ}
  Λ ← Λ\i // O(log n)
}

Retrieve the activity of Λ 
responsible
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Edge Finding Algorithm

EdgeFinding(T={1..n}) {
  (Θ,Λ) = (T,∅) // O(n log n) time
  Tlct ← sortZA([1..n],sortKey = lct) // O(n log n) time
  ite ← iterator(Tlct)
 j = ite.next()
  while (ite.hasNext()) {
    if (ectΘ >  lctj) throw InconsistencyException // overload
    (Θ,Λ) = (Θ\j,Λ∪j) // O(log n) time
   j ← ite.next()
    while (ect(Θ-Λ) > lctj) { // O(1) time
       i ← respect(Θ-Λ)

 esti ← max{esti,ectΘ}
       Λ ← Λ\i // O(log n) time
    }
  }
}

Executed at most n times 
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Fix-point
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Reminder on Idempotency
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Putting it all together

‣None of the algorithms above is idempotent.
‣According to Petr Vilím (see next slide), 

the following order for fixpoint computation is very efficient:
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‣Most of the notation, examples, … come from 
Petr Vilím’s PhD thesis (https://vilim.eu/petr/disertace.pdf), 
where all the proofs omitted here can be found.
‣This thesis had a big impact on CP solvers because most of the algorithms 

for a disjunctive resource introduced by Petr Vilím take O(n log n) time 
instead of O(n2) or O(n3).
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