
Constraint
Programming

1

Disjunctive Scheduling

Pierre Schaus

- Disjunctive Decomposition

- Job Shop

2

Job-Shop Problem

‣Color = resource (or: machine), with capacity 1.
‣Precedence constraints (denoted ≪) on the activities of a job.

3

time

job 1:

job 2:

job 3:

job 4:

job 5:

job 6:

disj
unc

tive

minimize makespan

≪ ≪ ≪ ≪ ≪

4

It would yield a Cumulative constraint 
with all resource requirements ri = 1 and capacity C = 1:

Disjunctive Resource, aka Unary Resource

C=1

The activities cannot overlap!

Binary Decomposition for a Unary Resource

‣ Let T be a set of n activities that cannot overlap.

‣ ∀ i, j ∈ T where i < j:
• bij ≡ si + di ≤ sj

• bji ≡ sj + dj ≤ si

• bij ≠ bji (either i ends before j starts, or vice-versa)

‣ How does this binary decomposition compare with timetable filtering  
for Cumulative([s1,…,sn],[d1,…,dn],[1,…,1],1)?

5

6

‣ The binary decomposition with reified constraints 
is at least as strong as timetable filtering for Cumulative.

‣ Example where the binary decomposition is strictly stronger:

Binary Decomposition: Example

A

B

Activity A has no mandatory part:
no pruning for B with timetable filtering!

Job-Shop Model
JobShopInstance instance = new JobShopInstance(“start”);

Solver cp = makeSolver();
// variable creation
IntVar[][] start = new IntVar[instance.nJobs][instance.nMachines];
IntVar[][] end = new IntVar[instance.nJobs][instance.nMachines];
for (int i = 0; i < instance.nJobs; i++) {
 for (int j = 0; j < instance.nMachines; j++) {
 start[i][j] = makeIntVar(cp, 0, instance.horizon);
 end[i][j] = plus(start[i][j], instance.duration[i][j]);
 }
}
// job precedences
for (int i = 0; i < instance.nJobs; i++) {
 for (int j = 1; j < instance.nMachines; j++) {
 cp.post(lessOrEqual(end[i][j - 1], start[i][j]));
 }
}
// disjunctive constraints
for (int m = 0; m < instance.nMachines; m++) {
 // collect activities on machine m
 IntVar[] start_m = instance.collect(start, m);
 int[] dur_m = instance.collect(instance.duration, m);
 cp.post(new Disjunctive(start_m, dur_m));
}
// objective = makespan minimization
IntVar[] endLast = new IntVar[instance.nJobs];
for (int i = 0; i < instance.nJobs; i++) {
 endLast[i] = end[i][instance.nMachines - 1];
}
IntVar makespan = maximum(endLast);
Objective obj = cp.minimize(makespan);
// search to fix the start time of all activities
DFSearch dfs = makeDfs(cp, firstFail(flatten(start)));

7

time

job 1:

job 2:

job 3:

job 4:

job 5:

job 6:

disj
unc

tive

minimize makespan

≪ ≪ ≪ ≪ ≪

Search for Job Shop

8

Search for Job Shop

‣Two alternatives :
1. Fix the start variables
2. Fix the ordering on each machine (and eventually the start variables)

9

10

‣Assume A and B execute on
the same machine, and their
starts are not yet fixed.
‣Pick one, say B, and branch to

fix its start.

Search for Job Shop: fix the start variables

B

0 1 2 3 4 5 6 7 8 9

A
Branch on start of B

B

0 1 2 3 4 5 6 7 8 9

A

B

0 1 2 3 4 5 6 7 8 9

A

start(B) = 1 start(B) ≠ 1

11

‣Assume A and B execute on
the same machine, and we do
not know yet if A will execute
before or after B.

Search for Job Shop: fix the ordering

B

0 1 2 3 4 5 6 7 8 9

A

A << B A >> B

B

0 1 2 3 4 5 6 7 8 9

A

B

0 1 2 3 4 5 6 7 8 9

AA << B A >> B

Fixing the ordering

12

‣ Post the reified constraints in the model:
‣ ∀ i, j ∈ T where i < j:

• bij ≡ si + di ≤ sj

• bji ≡ sj + dj ≤ si

• bij ≠ bji (either i ends before j starts, or vice-versa)

‣ Branch on the bij variables during the search

Fixing the ordering for the Job Shop

13

time

job 1:

job 2:

job 3:

job 4:

job 5:

job 6:

minimize
makespan

≪ ≪ ≪ ≪ ≪

1: Fix the ordering (total
order on each machine)

2: Fix makespan to its minimum
(always feasible)

Grimes, D., Hebrard, E., & Malapert, A. (2009). Closing the open shop: Contradicting conventional wisdom. In
International Conference on Principles and Practice of Constraint Programming, 2009

Earliest Completion Time

14

Notation and Definitions

‣ Let Ω ⊆ T be a subset of a set T of non-overlapping activities:

• estΩ = min {estj | j ∈ Ω} = earliest starting time of Ω

• lctΩ = max {lctj | j ∈ Ω} = latest completion time of Ω

• dΩ = ∑j ∈ Ω dj = total duration of Ω

15

Earliest Completion Time? Why is it important?
‣Assume that we know that A, B, C, D must precede E

‣Then E cannot start before the earliest completion time of the four activities

16

A

B

C

E

≪

≪

≪

D

≪

Earliest Completion Time? Why is it important?
‣Assume that we know that A, B, C, D must precede E

‣Then E cannot start before the earliest completion time of the four activities

17

A

B

C

E

≪

≪

≪

D

≪

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Earliest Completion Time? Why is it important?
‣Assume that we know that A, B, C, D must precede E

‣Then E cannot start before the earliest completion time of the four activities

18

A

B

C

E

≪

≪

≪

D

≪

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

A B C D

ect of
A,B,C,D

E cannot start
before 17

Earliest Completion Time

‣Things get complicated when activities have time windows (domains)
‣ect({A,B,C,D}) = 21

19

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

D

20

We cannot do better than 21

21

This problem is NP-hard 😢
See Garey and Johnson, problem SS1

Sequencing with Time Windows is NP-Complete

‣Reduction from the 3-Partition problem (known to be NP-complete) to our
problem of interest
‣3-Partition (https://en.wikipedia.org/wiki/3-partition_problem):

– The input is a multiset S of n = 3m positive integers with sum m T.
– The output is whether or not there exists a partition of S  

into m triplets S1, S2, …, Sm, each with sumT. 
(The S1, S2 , …, Sm must thus be disjoint and cover S.)

20

https://en.wikipedia.org/wiki/3-partition_problem
https://en.wikipedia.org/wiki/Partition_of_a_set
https://en.wikipedia.org/wiki/Disjoint_sets
https://en.wikipedia.org/wiki/Cover_(topology)

Sequencing with Time Windows is NP-Complete

‣Example: The set S = { 20, 23, 25, 30, 49, 45, 27, 30, 30, 40, 22, 19 } 
can be partitioned into the four triplets { 20, 25, 45 }, { 23, 27, 40 }, 
{ 49, 22, 19 }, { 30, 30, 30 }, each of which sums to T = 90.

21

‣T = 90‣T = 90

Interval 1

‣T = 90

Interval 2 Interval 4Interval 3

‣T = 90

Sequencing with Time Windows is NP-Complete

‣Example: The set S = { 20, 23, 25, 30, 49, 45, 27, 30, 30, 40, 22, 19 } 
can be partitioned into the four triplets { 20, 25, 45 }, { 23, 27, 40 }, 
{ 49, 22, 19 }, { 30, 30, 30 }, each of which sums to T = 90.

22

‣T = 90‣T = 90

Interval 1

‣T = 90

Interval 2 Interval 4Interval 3

‣T = 90

S
20

25 45
23

27

40

49 2219

30

30
30

Sequencing with Time Windows is NP-Complete

‣Example: The set S = { 20, 23, 25, 30, 49, 45, 27, 30, 30, 40, 22, 19 } 
can be partitioned into the four triplets { 20, 25, 45 }, { 23, 27, 40 }, 
{ 49, 22, 19 }, { 30, 30, 30 }, each of which sums to T = 90.

23

‣T = 90‣T = 90

Interval 1

‣T = 90

Interval 2 Interval 4Interval 3

‣T = 90

20 25 45 23 27 40 49 22 19 30 30 30

Lower Bound on the Earliest Completion Time

‣Relaxation of the time windows: 
keep the earliest start time but relax the latest completion time

24

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

D

20

Lower bound on the earliest completion time
= 18 (<= 21)

21

This relaxation is easy to solve 🥳.
You can for instance sort the activities by
earliest start time and schedule them as

soon as possible.

Lower Bound on the Earliest Completion Time

25

ComputeECTLowerBound(T={1..n}) {
 Test ← sortAZ([1..n],sortKey = est) // O(n log n)
 ect = -inf
 for (i ← Test) {
 ect ← max(esti+di , ect+di)
 }
 return ect
}

Lower Bound on the Earliest Completion Time

‣ This lower bound can be formally defined as 

‣ But, as just seen, we do not need to enumerate all the subsets, 
since we can compute it in O(n log n) time for n activities.

‣ In the following, by abuse of notation and since we will always use the lower bound, 
we drop “LB”:  

 is denoted by

ectLB
Ω = max{estΩ′￼

+ dΩ′￼
∣ Ω′￼ ⊆ Ω}

ectLB
Ω ectΩ

26

Latest Starting Time (same idea)

‣ We also introduce an upper bound on the latest starting time (mirroring problem), which is 
lstΩ = min {lctΩ’ – dΩ’ | Ω’ ⊆ Ω}

27

Conventions for empty set

‣ By convention:

• est∅ = ect∅ = –∞

• lst∅ = lct∅ = +∞

• d∅ = 0

28

Earliest Completion Times
of nested sets of activities

29

Earliest completion times of nested sets

‣Given n activities from the set T, given nested sets of activities

‣Can we compute all efficiently?

‣Naïve approach: compute each independently: O(n2 log n) time
‣More efficient approach: use a data structure called a Θ-tree

Ω1 = {T1} ⊂ Ω2 ⊂ Ω3 ⊂ ⋯ ⊂ Ωn = T with Ωi = Ωi−1 ∪ {Ti}

ect(Ω1), ect(Ω2), ect(Ω3), …, ect(Ωn)

30

Small example of nested sets

31

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

D

20 21

A B C D

Ω1

Ω2

Ω3

T

Ω4

ect({A})?

ect({A, B})?

ect({A, B, C})?
ect({A, B, C, D})?

Θ-tree intuition

‣The goal is to mimic the behavior of the seen algorithm:

32

ComputeECTLowerBound(T={1..n}) {
 Test ← sortAZ([1..n],sortKey = est)
 ect = -inf
 for (i ← Test) {
 ect ← max(esti+di , ect+di)
 }
 return ect
}

A

B

C

D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

[A,C,B,D]

Θ-tree intuition

‣The goal is to mimic the behavior of the seen algorithm:

33

ComputeECTLowerBound(T={1..n}) {
 Test ← sortAZ([1..n],sortKey = est)
 ect = -inf
 for (i ← Test) {
 ect ← max(esti+di , ect+di)
 }
 return ect
}

A

B

C

D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

A C B D

ect(A,C) ect(B,D)

ect(A,C,B,D)

2: bottom-up ect computation

1: activities are sorted wrt est
A C B D

Bottom up computation

34

esta = 0
pa = 2
Δa = 2

ecta = 2

estc = 3
pc = 6
𝚺Pc = 6

ectc = 9

estb = 5
pb = 5
𝚺Pb = 5

ectb = 10

estd = 11
pd = 4
𝚺Pd = 4

ectd = 15

Δac = 8
ectac = 9

𝚺Pbd = 9

ectbd = 15

𝚺PABCD =
17

ectabcd = 18

A

B

C

D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

A C B D

ΔABCD =
ectABCD =

ΔAC =
ectAC =

ΔBD = 9
ectBD = 15

estA =
dA =
ΔA =
ectA =

estC = 3
dC = 6
ΔC = 6
ectC = 9

estB = 5
dB = 5
ΔB = 5
ectB = 10

estD = 11
dD = 4
ΔD = 4
ectD = 15

Δv =

ectv =

Update rule for each non-leaf v:

Time complexity?

What do we gain compared to simple algorithm?

‣Not the same problem
‣We wanted to compute ect for nested sets
‣Θ-tree can deal with it, not the simple algo

35

ComputeECTLowerBound(T={1..n}) {
 Test ← sortAZ([1..n],sortKey = est)
 ect = -inf
 for (i ← Test) {
 ect ← max(esti+di , ect+di)
 }
 return ect
}

A B C D

Ω1

Ω2

Ω3

T

Ω4

Θ-tree, initialization

‣Empty set of activities

36

A B C D

Ω1

Ω2

Ω3

T

Ω4

estA = 0
dA = 2
ΔA = 0
ectA = -∞

estC = 3
dC = 6
ΔC = 0
ectC = -∞

estB = 5
dB = 5
ΔB = 0
ectB = -∞

estD = 11
dD = 4
ΔD = 0
ectD = -∞

Δ∅ = 0
ect∅ = -∞

Δ∅ = 0
ect∅ = -∞

Δ∅ = 0
ect∅ = -∞

A C B D

Insertion of A

37

A B C D

Ω1

Ω2

Ω3

T

Ω4

estA = 0
dA = 2
ΔA = 2
ectA = 2

estc = 3
pc = 6
Δc = 0
ectc = -∞

estb = 5
pb = 5
Δb = 0
ectb = -∞

estd = 11
pd = 4
Δd = 0
ectd = -∞

ΔA =
ectA =

Δ∅ = 0
ect∅ = -∞

ΔA =
ectA =

A C B D

estC = 3
dC = 6
ΔC = 0
ectC = -∞

estB = 5
dB = 5
ΔB = 0
ectB = -∞

estD = 11
dD = 4
ΔD = 0
ectD = -∞

Insertion of B

38

A B C D

Ω1

Ω2

Ω3

T

Ω4

estA = 0
dA = 2
ΔA = 2
ectA = 2

estc = 3
pc = 6
Δc = 0
ectc = -∞

estB = 5
dB = 5
ΔB = 5
ectB = 10

estd = 11
pd = 4
Δd = 0
ectd = -∞

ΔA = 2
ectA = 2

ΔB =
ectB =

ΔAB =
ectAB =

A C B D

estC = 3
dC = 6
ΔC = 0
ectC = -∞

estD = 11
dD = 4
ΔD = 0
ectD = -∞

Insertion of C

39

A B C D

Ω1

Ω2

Ω3

T

Ω4

estA = 0
dA = 2
ΔA = 2
ectA = 2

estC = 3
dC = 6
ΔC = 6
ectC = 9

estB = 5
dB = 5
ΔB = 5
ectB = 10

estd = 11
pd = 4
Δd = 0
ectd = -∞

ΔAC =
ectAC =

ΔB = 5
ectB = 10

ΔABC =
ectABC =

A C B D

estD = 11
dD = 4
ΔD = 0
ectD = -∞

Insertion of D

40

A B C D

Ω1

Ω2

Ω3

T

Ω4

estA = 0
dA = 2
ΔA = 2
ectA = 2

estC = 3
dC = 6
ΔC = 6
ectC = 9

estb = 5
pb = 5
Δb = 5
ectb = 10

estD = 11
dD = 4
ΔD = 4
ectD = 15

ΔAC = 8
ectAC = 9

ΔBD =
ectBD =

ΔABCD =
ectABCD =

A C B D

estB = 5
dB = 5
ΔB = 5
ectB = 10

41

A B C D

Ω1

Ω2

Ω3

T

Ω4

estA = 0
dA = 2
ΔA = 2
ectA = 2

estc = 3
pc = 6
Δc = 6
ectc = 9

estb = 5
pb = 5
Δb = 5
ectb = 10

estD = 11
dD = 4
ΔD = 4
ectD = 15

ΔAC = 8
ectAC = 9

ΔBD = 9
ectBD = 15

ΔABCD = 17
ectABCD = 18

A C B D

Total time complexity?

estc = 3
pc = 6
Δc = 6
ectc = 9

estC = 3
dC = 6
ΔC = 6
ectC = 9

estB = 5
dB = 5
ΔB = 5
ectB = 10

42

‣To remove activity i from a Θ-tree: set Δi = 0 and ecti = –∞.

Θ-Tree: Incremental Removal of C

estA = 0
dA = 2
ΔA = 2
ectA = 2

estC = 3
dC = 6
ΔC = 0
ectC = -∞

estB = 5
dB = 5
ΔB = 5
ectB = 10

estD = 11
dD = 4
ΔD = 4
ectD = 15

ΔA =
ectA =

ΔBD = 9
ectBD = 15

ΔABD =
ectABD =

A C B D

Wrap-up on Θ-trees

‣A Θ-tree for a set Ω of n activities is
– a balanced binary tree,
– whose leaf nodes correspond to the activities of Ω (sorted according to est),
– whose internal nodes have intermediate Δ and ect values, and
– whose root node has ectΩ.

43

Operation Time complexity Spec

init({1..n}) O(n log n) Initialize an empty Θ-tree for the activites {1..n}

insert(i) O(log n) Insert activity i into the Θ-tree

remove(i) O(log n) Remove activity i from the Θ-tree

ect O(1) Return ect of the set of activities in the Θ-tree

Overload Checker

44

45

Overload Checking = a feasibility check

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

46

‣ ∀ Ω ⊆ T : (estΩ + dΩ > lctΩ ↝ fail)

‣ If there exists a subset of activities that cannot be processed within its
bounds, then no solution exists. 
Example:

‣ Take Ω = {A,B,C}: 
estΩ = 0, dΩ = 5+5+6 = 16, lctΩ = 15, 0+16 > 15 ↝ fail.

Overload Checking = a feasibility check

This failure
is not captured by the
binary decomposition

of Disjunctive.

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Overload Checking: time complexity?

‣ ∀ Ω ⊆ T : (estΩ + dΩ > lctΩ ↝ fail)

‣We need to enumerate all subsets Ω of T, hence 2|T| checks.

‣ It is not very practical to embed an algorithm of exponential time complexity
in a propagator.

‣We need something else…

47

48

‣ Left cut: LCut(T,j) = {i | i ∈ T & lcti ≤ lctj}.

‣ Example: T = {A,B,C,D}

‣ LCut(T,A) =

‣ LCut(T,C) =

‣ LCut(T,B) =
‣ ⇒ fail

‣

Overload Checking: improve efficiency

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D

49

‣ ∀ Ω ⊆ T : (estΩ + dΩ > lctΩ ↝ fail)

‣ can be reformulated as:

‣ ∀ j ∈ T : ectLCut(T,j) > lctLCut(T,j) ↝ fail
‣ equivalent to

‣ ∀ j ∈ T : ectLCut(T,j) > lctj ↝ fail ⇒ fail

‣

Overload Checking: reformulation with LCut

What do we gain? Complexity?

We can now compute it efficiently 💡

by definition

50

‣ ⇒ fail

‣ For example, take j = B, 
with LCut(T,B) = {A,B,C} = subset of activities ending by the end of B: 

‣ ectLCut(T,B) = 16 > lctLCut(T,B) = 15 = lctB (the red equality is true by definition).

Overload Checking: example with LCut

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A

C

B

51

Overload checking rule: 
∀ j ∈ T : (ectLCut(T,j) > lctj ↝ fail)

Overload Checker taking O(n2 log n) time

OverloadCheckInefficient(T={1..n}) {
for (j ← {1..n}) {
 Θ ← Θ-Tree.init({1..n}) // O(n log n) time
 for (i ← LCut(T,j)) {
 Θ.insert(i) // O(log n) time
 }
 if (Θ.ect > lctj) { // O(1) time
 throw InconsistencyException
 }
 }
}

O(n2 log n) time

💡 Nested LCut

52

1

2

3

4
1

2

3

4

‣ LCut(T,j) = {i | i ∈ T & lcti ≤ lctj}

Sort according to lct

53

‣Observation:
– Let T = {1..n} be ordered such that lct1 ≤ … ≤ lctn .
– Then LCut(T,1) ⊆ LCut(T,2) ⊆ … ⊆ LCut(T,n) = T: all activities are eventually inserted.

Overload Checker taking O(n log n) time

OverloadCheckEfficient(T={1..n}) {
 Θ ← Θ-Tree.init({1..n}) // O(n log n) time
 T ← sortAZ([1..n],sortKey = lct) // O(n log n) time
 for (j ← T) {
 Θ.insert(j) // O(log n) time
 // invariant: Θ contains LCut(T,j)
 if (Θ.ect > lctj) { // O(1) time
 throw InconsistencyException
 }
 }
}

Overload Checking with Θ-Tree: an example
‣ Application of OverloadCheckEfficient algorithm on this example

54

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Overload Checking with Θ-Tree: an example

55

lctA = 14

estA = 0
dA = 5
ΔA = 0

ectA = –∞

estB = 1
dB = 5
ΔB = 0

ectB = –∞

estC = 3
dC = 6
ΔC = 0

ectC = –∞

ΔAB = 0
ectAB = –∞

ΔC = 0
ectC = –∞

Δroot = 0
ectroot = –∞

lctB = 15 lctC = 13

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Empty Θ-Tree initialization

OverloadCheckEfficient(T={1..n}) {
 T ← sortAZ([1..n],sortKey = lct)
 Θ ← Θ-Tree.init({1..n})
 for (j ← T) { // [C,A,B]
 Θ.insert(j)
 if (Θ.ect > lctj) {
 throw InconsistencyException
 }

 }
}

Overload Checking with Θ-Tree: an example

56

estA = 0
dA = 5
ΔA = 0

ectA = –∞

estB = 1
dB = 5
ΔB = 0

ectB = –∞

estC = 3
dC = 6
ΔC = 6 0

ectC = 9 –∞

ΔAB = 0
ectAB = –∞

ΔC = 6 0
ectC = 9 –∞

Δroot = 6 0
ectroot = 9 –∞

lctA = 14 lctB = 15 lctC = 13

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Insertion of C

OverloadCheckEfficient(T={1..n}) {
 T ← sortAZ([1..n],sortKey = lct)
 Θ ← Θ-Tree.init({1..n})
 for (j ← T) { // [C,A,B]
 Θ.insert(j) // j = C
 if (Θ.ect > lctj) {
 throw InconsistencyException
 }

 }
}

Overload Checking with Θ-Tree: an example

57

estA = 0
dA = 5
ΔA = 0

ectA = –∞

estB = 1
dB = 5
ΔB = 0

ectB = –∞

estC = 3
dC = 6
ΔC = 6

ectC = 9

ΔAB = 0
ectAB = –∞

ΔC = 6
ectC = 9

Δroot = 6
ectroot = 9

lctA = 14 lctB = 15 lctC = 13

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Feasibility check

OverloadCheckEfficient(T={1..n}) {
 T ← sortAZ([1..n],sortKey = lct)
 Θ ← Θ-Tree.init({1..n})
 for (j ← T) { // [C,A,B]
 Θ.insert(j) // j = C
 if (Θ.ect > lctj) { // 9 > 13 ✅
 throw InconsistencyException
 }

 }
}

Overload Checking with Θ-Tree: an example

58

estA = 0
dA = 5
ΔA = 5 0

ectA = 5 –∞

estB = 1
dB = 5
ΔB = 0

ectB = –∞

estC = 3
dC = 6
ΔC = 6

ectC = 9

ΔAB = 5 0
ectAB = 5 –∞

ΔC = 6
ectC = 9

Δroot = 11 6
ectroot = 11 9

lctA = 14 lctB = 15 lctC = 13

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Insertion of A

OverloadCheckEfficient(T={1..n}) {
 T ← sortAZ([1..n],sortKey = lct)
 Θ ← Θ-Tree.init({1..n})
 for (j ← T) { // [C,A,B]
 Θ.insert(j) // j = A
 if (Θ.ect > lctj) {
 throw InconsistencyException
 }

 }
}

Overload Checking with Θ-Tree: an example

59

estA = 0
dA = 5
ΔA = 5

ectA = 5

estB = 1
dB = 5
ΔB = 0

ectB = –∞

estC = 3
dC = 6
ΔC = 6

ectC = 9

ΔAB = 5
ectAB = 5

ΔC = 6
ectC = 9

Δroot = 11
ectroot = 11

lctA = 14 lctB = 15 lctC = 13

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Feasibility check

OverloadCheckEfficient(T={1..n}) {
 T ← sortAZ([1..n],sortKey = lct)
 Θ ← Θ-Tree.init({1..n})
 for (j ← T) { // [C,A,B]
 Θ.insert(j) // j = A
 if (Θ.ect > lctj) { // 11 < 14 ✅
 throw InconsistencyException
 }

 }
}

Overload Checking with Θ-Tree: an example

60

estA = 0
dA = 5
ΔA = 5

ectA = 5

estB = 1
dB = 5
ΔB = 5 0

ectB = 6 –∞

estC = 3
dC = 6
ΔC = 6

ectC = 9

ΔAB = 10 5
ectAB = 10 5

ΔC = 6
ectC = 9

Δroot = 16 11
ectroot = 16 11

lctA = 14 lctB = 15 lctC = 13

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Insertion of B

OverloadCheckEfficient(T={1..n}) {
 T ← sortAZ([1..n],sortKey = lct)
 Θ ← Θ-Tree.init({1..n})
 for (j ← T) { // [C,A,B]
 Θ.insert(j) // j = B
 if (Θ.ect > lctj) {
 throw InconsistencyException
 }

 }
}

Overload Checking with Θ-Tree: an example

61

estA = 0
dA = 5
ΔA = 5

ectA = 5

estB = 1
dB = 5
ΔB = 5

ectB = 6

estC = 3
dC = 6
ΔC = 6

ectC = 9

ΔAB = 10
ectAB = 10

ΔC = 6
ectC = 9

Δroot = 16
ectroot = 16

lctA = 14 lctB = 15 lctC = 13

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Feasibility check

OverloadCheckEfficient(T={1..n}) {
 T ← sortAZ([1..n],sortKey = lct)
 Θ ← Θ-Tree.init({1..n})
 for (j ← T) { // [C,A,B]
 Θ.insert(j) // j = C
 if (Θ.ect > lctj) { // 16 > 15 ❌
 throw InconsistencyException
 }

 }
}

Detectable Precedences

62

63

‣ Both A and B cannot be scheduled after C

‣ Therefore they must both be scheduled before

Detectable Precedences = a filtering rule

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

64

‣ Both A and B must end before C starts is denoted by {A,B} ≪ C

‣ By taking the earliest start of A and (duration A + duration B), 
we can filter (push) the start of C to 10

Detectable Precedences = a filtering rule

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

65

‣ A precedence j ≪ i is detectable if esti + di > lctj – dj

๏  

๏that is if ecti > lstj then activity j cannot start after activity i ends.

๏Set of all activities with detectable precedence before i: 
DPrec(T,i) = { j | j ∈ T \ {i} & esti + di > lctj – dj }.

‣ Filtering: esti ← max(esti , ectDPrec(T,i)), for all i ∈ T.

Detectable Precedences = a filtering rule

j

i

lctj – dj

esti + di

Nested sets?

‣ DPrec’(T,i) = { j : j ∈ T & esti + di > lctj – dj }. 
Note that activity i is sometimes in DPrec’(T,i).

‣ Hence: DPrec(T,i) = DPrec’(T,i) \ {i}.

‣ In what order should the activities i be considered to have nested DPrec’(T,i) sets?

66

Order on i to have nested DPrec’(T,i) sets

1

2

3

4

A

B

C

D

esti+di

lctj-dj

…

…

DPrec’

67

68

‣ Let T = {1..n} be ordered such that

• est1 + d1 ≤ est2 + d2 ≤ … ≤ estn + dn

• Then: DPrec’(T,1) ⊆ DPrec’(T,2) ⊆ … ⊆ DPrec’(T,n)

‣ This is exactly what we are looking for: 
an order to consider the activities i of T such that the detectable precedence set is growing
monotonically, as this is very important for computing all ectDPrec(T,i) efficiently & incrementally
with a Θ-tree.

‣ Note that DPrec’(T,n) is not necessarily T: 
not necessarily all activities are eventually inserted into the initialized Θ-tree.

Iterating on activities

Detectable Precedences: O(n log n) time

69

DetectablePrecedence(T={1..n}) {
 Tlst ← sortAZ([1..n],sortKey = lct-d) // O(n log n)
 Tect ← sortAZ([1..n],sortKey = est+d) // O(n log n)
 ite ← iterator(Tlst)
 j ← ite.next() // candidate precedence of i
 Θ ← Θ-Tree.init({1..n}) // O(n log n) time
 for (i ← Tect) {
 while (esti+di > lctj-dj) {
 Θ.insert(j) // O(log n) time
 if (ite.hasNext()) {j ← ite.next()} else {break}
 }
 est’i ← max(esti, ectΘ\i) // O(log n) time
 }
 esti ← est’i, ∀i∈T
}

This is executed at most n times

Because Θ contains DPrec’(T,i) and not DPrec(T,i):
Θ.remove(i), use Θ.ect for max, Θ.insert(i).

1

2

3

4

A

B

C

D

ect

lst

…

…

DPrec’

Detectable precedence filtering with Θ-Tree, an example

70

SortingA

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

DetectablePrecedence(T={1..n}) {
 Tlst ← sortAZ([1..n],sortKey = lct-d) // [A,B,C]
 Tect ← sortAZ([1..n],sortKey = est+d) // [A,B,C]
 ite ← iterator(Tlst)
 j ← ite.next() // candidate precedence of i

 Θ ← Θ-Tree.init({1..n})
 for (i ← Tect) {
 while (esti+di > lctj-dj) {
 Θ.insert(j)
 if (ite.hasNext()) {j ← ite.next()} else {break}
 }
 est’i ← max(esti, ectΘ\i)

 }
 esti ← est’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170

C

C

B

A

esti + di

lctj − dj

Detectable precedence filtering with Θ-Tree, an example

71

 Θ-Tree initialiation

estA = 0
dA = 5
ΔA = 0

ectA = –∞

estB = 1
dB = 5
ΔB = 0

ectB = –∞

estC = 3
dC = 2
ΔC = 0

ectC = –∞

ΔAB = 0
ectAB = –∞

ΔC = 0
ectC = –∞

Δroot = 0
ectroot = –∞

DetectablePrecedence(T={1..n}) {
 Tlst ← sortAZ([1..n],sortKey = lct-d) // [A, B, C]
 Tect ← sortAZ([1..n],sortKey = est+d) // [A, B, C]
 ite ← iterator(Tlst)
 j ← ite.next() // candidate precedence of i

 Θ ← Θ-Tree.init({1..n})
 for (i ← Tect) {
 while (esti+di > lctj-dj) {
 Θ.insert(j)
 if (ite.hasNext()) {j ← ite.next()} else {break}
 }
 est’i ← max(esti, ectΘ\i)

 }
 esti ← est’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170

C

C

B

A

esti + di

lctj − dj

Detectable precedence filtering with Θ-Tree, an example

72

First iteration: A is considered

DetectablePrecedence(T={1..n}) {
 Tlst ← sortAZ([1..n],sortKey = lct-d) // [A, B, C]
 Tect ← sortAZ([1..n],sortKey = est+d) // [A, B, C]
 ite ← iterator(Tlst)
 j ← ite.next() // candidate precedence of i

 Θ ← Θ-Tree.init({1..n})
 for (i ← Tect) { // i ← A
 while (esti+di > lctj-dj) {
 Θ.insert(j)
 if (ite.hasNext()) {j ← ite.next()} else {break}
 }
 est’i ← max(esti, ectΘ\i)

 }
 esti ← est’i, ∀i∈T
}

estA = 0
dA = 5
ΔA = 0

ectA = –∞

estB = 1
dB = 5
ΔB = 0

ectB = –∞

estC = 3
dC = 2
ΔC = 0

ectC = –∞

ΔAB = 0
ectAB = –∞

ΔC = 0
ectC = –∞

Δroot = 0
ectroot = –∞

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170

C

C

B

A

Detectable precedence filtering with Θ-Tree, an example

73

First iteration: A is considered
Nothing to

insert into the Θ-tree

DetectablePrecedence(T={1..n}) {
 Tlst ← sortAZ([1..n],sortKey = lct-d) // [A, B, C]
 Tect ← sortAZ([1..n],sortKey = est+d) // [A, B, C]
 ite ← iterator(Tlst)
 j ← ite.next() // candidate precedence of i

 Θ ← Θ-Tree.init({1..n})
 for (i ← Tect) { // i ← A
 while (esti+di > lctj-dj) {
 Θ.insert(j)
 if (ite.hasNext()) {j ← ite.next()} else {break}
 }
 est’i ← max(esti, ectΘ\i)

 }
 esti ← est’i, ∀i∈T
}

estA = 0
dA = 5
ΔA = 0

ectA = –∞

estB = 1
dB = 5
ΔB = 0

ectB = –∞

estC = 3
dC = 2
ΔC = 0

ectC = –∞

ΔAB = 0
ectAB = –∞

ΔC = 0
ectC = –∞

Δroot = 0
ectroot = –∞

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170

C

C

B

A

Detectable precedence filtering with Θ-Tree, an example

74

Second iteration: B is considered

DetectablePrecedence(T={1..n}) {
 Tlst ← sortAZ([1..n],sortKey = lct-d) // [A, B, C]
 Tect ← sortAZ([1..n],sortKey = est+d) // [A, B, C]
 ite ← iterator(Tlst)
 j ← ite.next() // candidate precedence of i

 Θ ← Θ-Tree.init({1..n})
 for (i ← Tect) { // i ← B
 while (esti+di > lctj-dj) {
 Θ.insert(j)
 if (ite.hasNext()) {j ← ite.next()} else {break}
 }
 est’i ← max(esti, ectΘ\i)

 }
 esti ← est’i, ∀i∈T
}

estA = 0
dA = 5
ΔA = 0

ectA = –∞

estB = 1
dB = 5
ΔB = 0

ectB = –∞

estC = 3
dC = 2
ΔC = 0

ectC = –∞

ΔAB = 0
ectAB = –∞

ΔC = 0
ectC = –∞

Δroot = 0
ectroot = –∞

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170

C

C

B

A

Detectable precedence filtering with Θ-Tree, an example

75

Second iteration: B is considered
Nothing to insert
into the Θ-tree

DetectablePrecedence(T={1..n}) {
 Tlst ← sortAZ([1..n],sortKey = lct-d) // [A, B, C]
 Tect ← sortAZ([1..n],sortKey = est+d) // [A, B, C]
 ite ← iterator(Tlst)
 j ← ite.next() // candidate precedence of i

 Θ ← Θ-Tree.init({1..n})
 for (i ← Tect) { // i ← B
 while (esti+di > lctj-dj) {
 Θ.insert(j)
 if (ite.hasNext()) {j ← ite.next()} else {break}
 }
 est’i ← max(esti, ectΘ\i)

 }
 esti ← est’i, ∀i∈T
}

estA = 0
dA = 5
ΔA = 0

ectA = –∞

estB = 1
dB = 5
ΔB = 0

ectB = –∞

estC = 3
dC = 2
ΔC = 0

ectC = –∞

ΔAB = 0
ectAB = –∞

ΔC = 0
ectC = –∞

Δroot = 0
ectroot = –∞

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170

C

C

B

A

Detectable precedence filtering with Θ-Tree, an example

76

Third iteration: C is considered

DetectablePrecedence(T={1..n}) {
 Tlst ← sortAZ([1..n],sortKey = lct-d) // [A, B, C]
 Tect ← sortAZ([1..n],sortKey = est+d) // [A, B, C]
 ite ← iterator(Tlst)
 j ← ite.next() // candidate precedence of i

 Θ ← Θ-Tree.init({1..n})
 for (i ← Tect) { // i ← C
 while (esti+di > lctj-dj) {
 Θ.insert(j)
 if (ite.hasNext()) {j ← ite.next()} else {break}
 }
 est’i ← max(esti, ectΘ\i)

 }
 esti ← est’i, ∀i∈T
}

estA = 0
dA = 5
ΔA = 0

ectA = –∞

estB = 1
dB = 5
ΔB = 0

ectB = –∞

estC = 3
dC = 2
ΔC = 0

ectC = –∞

ΔAB = 0
ectAB = –∞

ΔC = 0
ectC = –∞

Δroot = 0
ectroot = –∞

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170

C

C

B

A

Detectable precedence filtering with Θ-Tree, an example

77

Third iteration: C is considered

DetectablePrecedence(T={1..n}) {
 Tlst ← sortAZ([1..n],sortKey = lct-d) // [A, B, C]
 Tect ← sortAZ([1..n],sortKey = est+d) // [A, B, C]
 ite ← iterator(Tlst)
 j ← ite.next() // candidate precedence of i

 Θ ← Θ-Tree.init({1..n})
 for (i ← Tect) { // i ← C
 while (esti+di > lctj-dj) {
 Θ.insert(j)
 if (ite.hasNext()) {j ← ite.next()} else {break}
 }
 est’i ← max(esti, ectΘ\i)

 }
 esti ← est’i, ∀i∈T
}

estA = 0
dA = 5
ΔA = 0

ectA = –∞

estB = 1
dB = 5
ΔB = 0

ectB = –∞

estC = 3
dC = 2
ΔC = 0

ectC = –∞

ΔAB = 0
ectAB = –∞

ΔC = 0
ectC = –∞

Δroot = 0
ectroot = –∞

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170

C

C

B

A

A and B will be
inserted

into the Θ-tree

B

A

Detectable precedence filtering with Θ-Tree, an example

78

Insertion of A

estA = 0
dA = 5 0
ΔA = 5 0

ectA = 5 –∞

estB = 1
dB = 5
ΔB = 0

ectB = –∞

estC = 3
dC = 2
ΔC = 0

ectC = –∞

ΔAB = 5 0
ectAB = 5 –∞

ΔC = 0
ectC = –∞

Δroot = 5 0
ectroot = 5 –∞

DetectablePrecedence(T={1..n}) {
 Tlst ← sortAZ([1..n],sortKey = lct-d) // [A, B, C]
 Tect ← sortAZ([1..n],sortKey = est+d) // [A, B, C]
 ite ← iterator(Tlst)
 j ← ite.next() // candidate precedence of i

 Θ ← Θ-Tree.init({1..n})
 for (i ← Tect) { // i ← C
 while (esti+di > lctj-dj) {
 Θ.insert(j)
 if (ite.hasNext()) {j ← ite.next()} else {break}
 }
 est’i ← max(esti, ectΘ\i)

 }
 esti ← est’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170

C

C

B

A

A and B will be
inserted

into the Θ-tree

B

A

Detectable precedence filtering with Θ-Tree, an example

79

Insertion of B

estA = 0
dA = 5
ΔA = 5

ectA = 5

estB = 1
dB = 5 0
ΔB = 5 0

ectB = 6 –∞

estC = 3
dC = 2
ΔC = 0

ectC = –∞

ΔAB = 10 5
ectAB = 10 5

ΔC = 0
ectC = –∞

Δroot = 10 5
ectroot = 10 5

DetectablePrecedence(T={1..n}) {
 Tlst ← sortAZ([1..n],sortKey = lct-d) // [A, B, C]
 Tect ← sortAZ([1..n],sortKey = est+d) // [A, B, C]
 ite ← iterator(Tlst)
 j ← ite.next() // candidate precedence of i

 Θ ← Θ-Tree.init({1..n})
 for (i ← Tect) { // i ← C
 while (esti+di > lctj-dj) {
 Θ.insert(j)
 if (ite.hasNext()) {j ← ite.next()} else {break}
 }
 est’i ← max(esti, ectΘ\i)

 }
 esti ← est’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170

C

C

B

A

A and B will be
inserted

into the Θ-tree

B

A

Detectable precedence filtering with Θ-Tree, an example

80

estA = 0
dA = 5
ΔA = 5

estB = 1
dB = 5
ΔB = 5

estC = 3
dC = 2
ΔC = 0

ΔAB = 10
ectAB = 10

ΔC = 0
ectC = –∞

Δroot = 10
ectroot = 10

DetectablePrecedence(T={1..n}) {
 Tlst ← sortAZ([1..n],sortKey = lct-d) // [A, B, C]
 Tect ← sortAZ([1..n],sortKey = est+d) // [A, B, C]
 ite ← iterator(Tlst)
 j ← ite.next() // candidate precedence of i

 Θ ← Θ-Tree.init({1..n})
 for (i ← Tect) { // i ← C
 while (esti+di > lctj-dj) {
 Θ.insert(j)
 if (ite.hasNext()) {j ← ite.next()} else {break}
 }
 est’i ← max(esti, ectΘ\i)

 }
 esti ← est’i, ∀i∈T
}

 estC = est’C = 10

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170

C

C

B

A

A and B will be
inserted

into the Θ-tree

B

A

Not-Last

81

Not-Last = another filtering rule

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

It is impossible to have {A,B} ≪ C,
so C must end before A or B (or both)

‣ Activity C cannot be scheduled after (A and B):

82

Not-Last = another filtering rule

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Take the minimum of the two cases:
lctC ← min(lctC , max{lctB–dB, lctA–dA}).

‣ Activity C cannot be scheduled after (A and B)

83

84

‣ ∀Ω ⊂ T non-empty strict subset of T, ∀i ∈ T\Ω:
estΩ + dΩ > lcti – di ↝ lcti ← min(lcti , max {lctj – dj | j ∈Ω}) (NL)

‣ Example: For Ω = {A,B}, activity i = C cannot start last:

‣ Again, we need to find a way to enumerate the Ω in a nested way.

Not-Last filtering formally defined

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

It is impossible to have {A,B} ≪ C,
so C must end before A or B (or both):
lctC ← min(lctC , max{lctB–dB, lctA–dA}).

85

‣ ∀Ω ⊂ T non-empty strict subset of T, ∀i ∈ T\Ω:
estΩ + dΩ > lcti – di ↝ lcti ← min(lcti , max {lctj – dj | j ∈Ω}) (NL)

‣ Example: For Ω = {A,B}, activity i = C cannot start last:

‣ Again, we need to find a way to enumerate the Ω in a nested way.

Not-Last filtering formally defined

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

It is impossible to have {A,B} ≪ C,
so C must end before A or B (or both):
lctC ← min(lctC , max{lctB–dB, lctA–dA}).

86

‣ estΩ + dΩ > lcti – di ↝ lcti ← min(lcti , max {lctj – dj | j ∈ Ω}) (NL)

‣Observation: If there is a subset Ω for which this rule actually filters, 
then it is a subset of NLSet(T,i) = { j | j ∈ T \ {i} & lctj – dj < lcti }.

Not-Last Rule

C

i

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

B

A

A is not in NLSet(T,i), but B and C are in it!

87

‣ estΩ + dΩ > lcti – di ↝ lcti ← min(lcti , max {lctj – dj | j ∈ Ω}) (NL)

‣Observation: If there is a subset Ω for which this rule actually filters, 
then it is a subset of NLSet(T,i) = { j | j ∈ T \ {i} & lctj – dj < lcti }.

‣Does there exist a subset Ω ⊆ NLSet(T,i) for which 
the detection part of the rule (namely estΩ + dΩ > lcti – di) also holds?

‣Such a subset exists if and only if  
max {estΩ’ + dΩ’ | Ω’ ⊆ NLSet(T,i)} > lcti – di .

Not-Last Rule

The left-hand side is the definition of ectNLSet(T,i) :
this probably means that a Θ-tree will be useful…

88

Let us make this more efficient!

‣The existence of a subset Ω ⊆ NLSet(T,i) triggering the rule can be tested as 
 ectNLSet(T,i) > lcti – di

‣The problem is that we then do not have a subset Ω for filtering (we only test for the existence
of it to trigger the rule).

‣But do we really need it? 
No! if we accept to relax the filtering: 
 max {lctj – dj | j ∈ Ω} ≤ max {lctj – dj | j ∈ NLSet(T,i)} < lcti

Not-Last Rule

Because Ω ⊆ NLSet(T,i): 
the advantage of this relaxation 

is that we do not need a Ω!

Weaker Not-Last Rule

‣ estΩ + dΩ > lcti – di ↝ lcti ← min(lcti , max {lctj – dj | j ∈ Ω}) (NL)

‣ ectNLSet(T,i) > lcti – di ↝ lcti ← max {lctj – dj | j ∈ NLSet(T,i)} (NL’)

‣ Rule NL’ may filter less than rule NL, but the fixpoint is the same.

89

Not-Last: Implementation

‣Recall: NLSet(T,i) = { j | j ∈ T \ {i} & lctj – dj < lcti }.

‣We are looking for an order on i so as to have nested sets.

‣Let NLSet’(T,i) = { j | j ∈ T & lctj – dj < lcti }. 
Note that i is always in NLSet’(T,i).

‣ In what order should we consider activities to have nested NLSet’(T,i) sets?

90

Not-Last: Filtering Algorithm

1

2

3

4

A

B

C

D

lcti

lctj-dj

…

…

NLSet’

91

Not-Last: Implementation

‣Let NLSet’(T,i) = { j | j ∈ T & lctj – dj < lcti }. 
Note that i is always in NLSet’(T,i).

‣ Let T = {1..n} be ordered such that lct1 ≤ lct2 ≤ … ≤ lctn : 
then NLSet’(T,1) ⊆ NLSet’(T,2) ⊆ … ⊆ NLSet’(T,n) = T: 
all activities are eventually inserted into the initialised Θ-tree.

‣ Now we have a way to compute the NLSet(T,i) incrementally when using a Θ-tree.

92

Not-Last: Filtering Algorithm

93

NotLast(T={1..n}) {
 lct’i ← lcti, ∀i∈T
 Tlst ← sortAZ([1..n],sortKey = lct-d) // O(n log n) time
 Tlct ← sortAZ([1..n],sortKey = lct) // O(n log n) time
 ite ← iterator(Tlst)
 k ← ite.next()
 j ← -1
 Θ ← Θ-Tree.init({1..n}) // O(n log n) time
 for (i ← Tlct) {
 while (lcti > lctk-dk) {
 Θ.insert(k) // O(log n) time
 j ← k // lctj-dj = max {lctk - dk : k ∈ NLSet(T,i)}
 k ← ite.next()
 }
 if (ectΘ\i > lcti-di) { // O(log n) time
 lct’i ← min(lcti, lctj-dj)
 }
 }
 lcti ← lct’i, ∀i∈T
} Θ-tree contains all NLSet’(T,i).

Not last filtering with Θ-Tree, an example

94

Sorting
A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

NotLast(T={1..n}) {
 lct’i ← lcti, ∀i∈T
 Tlst ← sortAZ([1..n],sortKey = lct-d) // [A, C, B]
 Tlct ← sortAZ([1..n],sortKey = lct) // [C, A, B]
 ite ← iterator(Tlst)
 k ← ite.next() // k = A
 j ← -1

 Θ ← Θ-Tree.init({1..n})
 ...
 ...
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C

C

B

A

0

lctk − dk

Not last filtering with Θ-Tree, an example

95

NotLast(T={1..n}) {
 lct’i ← lcti, ∀i∈T
 Tlst ← sortAZ([1..n],sortKey = lct-d) // [A, C, B]
 Tlct ← sortAZ([1..n],sortKey = lct) // [C, A, B]
 ite ← iterator(Tlst)
 k ← ite.next() // k = A
 j ← -1

 Θ ← Θ-Tree.init({1..n})
 ...
 ...
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C

C

B

A

0

 Θ-Tree initialisation

estA = 0
dA = 5
ΔA = 0

ectA = –∞

estB = 1
dB = 5
ΔB = 0

ectB = –∞

estC = 3
dC = 4
ΔC = 0

ectC = –∞

ΔAB = 0
ectAB = –∞

ΔC = 0
ectC = –∞

Δroot = 0
ectroot = –∞

lctk − dk

Not last filtering with Θ-Tree, an example

96

NotLast(T={1..n}) {
 ...
 ...
 Θ ← Θ-Tree.init({1..n})
 for (i ← Tlct) { // i ← C
 while (lcti > lctk-dk) {
 Θ.insert(k) // O(log n) time
 j ← k // lctj-dj = max {lctk - dk : k ∈ NLSet(T,i)}
 k ← ite.next()
 }
 if (ectΘ\i > lcti-di) { // O(log n) time
 lct’i ← min(lcti, lctj-dj)
 }
 }
 lcti ← lct’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C

C

B

A

0

First iteration: C is considered

estA = 0
dA = 5
ΔA = 0

ectA = –∞

estB = 1
dB = 5
ΔB = 0

ectB = –∞

estC = 3
dC = 4
ΔC = 0

ectC = –∞

ΔAB = 0
ectAB = –∞

ΔC = 0
ectC = –∞

Δroot = 0
ectroot = –∞

lctk − dk

Not last filtering with Θ-Tree, an example

97

NotLast(T={1..n}) {
 ...
 ...
 Θ ← Θ-Tree.init({1..n})
 for (i ← Tlct) { // i ← C
 while (lcti > lctk-dk) {
 Θ.insert(k) // O(log n) time
 j ← k // lctj-dj = max {lctk - dk : k ∈ NLSet(T,i)}
 k ← ite.next()
 }
 if (ectΘ\i > lcti-di) { // O(log n) time
 lct’i ← min(lcti, lctj-dj)
 }
 }
 lcti ← lct’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C

C

B

A

0

First iteration: C is considered

estA = 0
dA = 5
ΔA = 0

ectA = –∞

estB = 1
dB = 5
ΔB = 0

ectB = –∞

estC = 3
dC = 4
ΔC = 0

ectC = –∞

ΔAB = 0
ectAB = –∞

ΔC = 0
ectC = –∞

Δroot = 0
ectroot = –∞

A, C, B inserted
in Θ-tree, they all belong to

NLSet’(C)

lctk − dk

Not last filtering with Θ-Tree, an example

98

NotLast(T={1..n}) {
 ...
 ...
 Θ ← Θ-Tree.init({1..n})
 for (i ← Tlct) { // i ← C
 while (lcti > lctk-dk) { // k = A
 Θ.insert(k) // O(log n) time
 j ← k // lctj-dj = max {lctk - dk : k ∈ NLSet(T,i)}
 k ← ite.next()
 }
 if (ectΘ\i > lcti-di) { // O(log n) time
 lct’i ← min(lcti, lctj-dj)
 }
 }
 lcti ← lct’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C

C

B

A

0

Insertion of A

estB = 1
dB = 5
ΔB = 0

ectB = –∞

estC = 3
dC = 4
ΔC = 0

ectC = –∞

ΔC = 0
ectC = –∞

A,C, and B will
be inserted

in the Θ-tree

estA = 0
dA = 5
ΔA = 5 0

ectA = 5 –∞

ΔAB = 5 0
ectAB = 5 –∞

Δroot = 5 0
ectroot = 5 –∞

lctk − dk

Not last filtering with Θ-Tree, an example

99

NotLast(T={1..n}) {
 ...
 ...
 Θ ← Θ-Tree.init({1..n})
 for (i ← Tlct) { // i ← C
 while (lcti > lctk-dk) { // k = C
 Θ.insert(k) // O(log n) time
 j ← k // lctj-dj = max {lctk - dk : k ∈ NLSet(T,i)}
 k ← ite.next()
 }
 if (ectΘ\i > lcti-di) { // O(log n) time
 lct’i ← min(lcti, lctj-dj)
 }
 }
 lcti ← lct’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C

C

B

A

0

Insertion of C

estB = 1
dB = 5
ΔB = 0

ectB = –∞

estC = 3
dC = 4
ΔC = 4 0

ectC = 7 –∞

ΔC = 4 0
ectC = 7 –∞

A,C, and B will
be inserted

in the Θ-tree

estA = 0
dA = 5
ΔA = 5

ectA = 5

ΔAB = 5
ectAB = 5

Δroot = 9 5
ectroot = 9 5

lctk − dk

Not last filtering with Θ-Tree, an example

100

NotLast(T={1..n}) {
 ...
 ...
 Θ ← Θ-Tree.init({1..n})
 for (i ← Tlct) { // i ← C
 while (lcti > lctk-dk) { // k = B
 Θ.insert(k) // O(log n) time
 j ← k // lctj-dj = max {lctk - dk : k ∈ NLSet(T,i)}
 k ← ite.next()
 }
 if (ectΘ\i > lcti-di) { // O(log n) time
 lct’i ← min(lcti, lctj-dj)
 }
 }
 lcti ← lct’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C

C

B

A

0

Insertion of B

estB = 1
dB = 5
ΔB = 5 0

ectB = 6 –∞

estC = 3
dC = 4
ΔC = 4

ectC = 7

ΔC = 4
ectC = 7

A,C, and B will
be inserted

in the Θ-tree

estA = 0
dA = 5
ΔA = 5

ectA = 5

ΔAB = 10 5
ectAB = 10 5

Δroot = 14 9
ectroot = 14 9

lctk − dk

Not last filtering with Θ-Tree, an example

101

NotLast(T={1..n}) {
 ...
 ...
 Θ ← Θ-Tree.init({1..n})
 for (i ← Tlct) { // i ← C
 while (lcti > lctk-dk) { // k = B
 Θ.insert(k) // O(log n) time
 j ← k // lctj-dj = max {lctk - dk : k ∈ NLSet(T,i)}
 k ← ite.next()
 }
 if (ectΘ\i > lcti-di) { // ectΘ\C = 10 and lctC-dC = 9
 lct’i ← min(lcti, lctj-dj)
 }
 }
 lcti ← lct’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C

C

B

A

0

estB = 1
dB = 5
ΔB = 5

ectB = 6

estC = 3
dC = 4
ΔC = 0 4

ectC = -∞ 7

ΔC = 0 4
ectC = –∞ 7

estA = 0
dA = 5
ΔA = 5

ectA = 5

ΔAB = 10
ectAB = 10

Δroot = 10 14
ectroot = 10 14

Θ \ {C}

lct’C = min(lctC, lctB-dB) = 10

lctk − dk

Not last filtering with Θ-Tree, an example

102

NotLast(T={1..n}) {
 ...
 ...
 Θ ← Θ-Tree.init({1..n})
 for (i ← Tlct) { // i ← A
 while (lcti > lctk-dk) {
 Θ.insert(k) // O(log n) time
 j ← k // lctj-dj = max {lctk - dk : k ∈ NLSet(T,i)}
 k ← ite.next()
 }
 if (ectΘ\i > lcti-di) { // O(log n) time
 lct’i ← min(lcti, lctj-dj)
 }
 }
 lcti ← lct’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C

C

B

A

0

Second iteration: A is considered

estB = 1
dB = 5
ΔB = 5

ectB = 6

estC = 3
dC = 4
ΔC = 4

ectC = 7

ΔC = 4
ectC = 7

estA = 0
dA = 5
ΔA = 5

ectA = 5

ΔAB = 10
ectAB = 10

Δroot = 14
ectroot = 14

All activities are already
in the Θ-Tree

lctk − dk

Not last filtering with Θ-Tree, an example

103

NotLast(T={1..n}) {
 ...
 ...
 Θ ← Θ-Tree.init({1..n})
 for (i ← Tlct) { // i ← A
 while (lcti > lctk-dk) {
 Θ.insert(k) // O(log n) time
 j ← k // lctj-dj = max {lctk - dk : k ∈ NLSet(T,i)}
 k ← ite.next()
 }
 if (ectΘ\i > lcti-di) { // ectΘ\A = 10 and lctA-dA = 9
 lct’i ← min(lcti, lctj-dj)
 }
 }
 lcti ← lct’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C

C

B

A

0

estB = 1
dB = 5
ΔB = 5

ectB = 6

estC = 3
dC = 4
ΔC = 4

ectC = 7

ΔC = 4
ectC = 7

estA = 0
dA = 5
ΔA = 0 5

ectA = –∞ 5

ΔAB = 5 10
ectAB = 6 10

Δroot = 9 14
ectroot = 10 14

Θ \ {A}

lct’A = min(lctA, lctB-dB) = 10

lctk − dk

Not last filtering with Θ-Tree, an example

104

NotLast(T={1..n}) {
 ...
 ...
 Θ ← Θ-Tree.init({1..n})
 for (i ← Tlct) { // i ← B
 while (lcti > lctk-dk) {
 Θ.insert(k) // O(log n) time
 j ← k // lctj-dj = max {lctk - dk : k ∈ NLSet(T,i)}
 k ← ite.next()
 }
 if (ectΘ\i > lcti-di) { // O(log n) time
 lct’i ← min(lcti, lctj-dj)
 }
 }
 lcti ← lct’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C

C

B

A

0

Third iteration: B is considered

estB = 1
dB = 5
ΔB = 5

ectB = 6

estC = 3
dC = 4
ΔC = 4

ectC = 7

ΔC = 4
ectC = 7

estA = 0
dA = 5
ΔA = 5

ectA = 5

ΔAB = 10
ectAB = 10

Δroot = 14
ectroot = 14

All activities are already
in the Θ-Tree

lctk − dk

Not last filtering with Θ-Tree, an example

105

NotLast(T={1..n}) {
 ...
 ...
 Θ ← Θ-Tree.init({1..n})
 for (i ← Tlct) { // i ← B
 while (lcti > lctk-dk) {
 Θ.insert(k) // O(log n) time
 j ← k // lctj-dj = max {lctk - dk : k ∈ NLSet(T,i)}
 k ← ite.next()
 }
 if (ectΘ\i > lcti-di) { // ectΘ\B = 9 and lctB-dB = 10
 lct’i ← min(lcti, lctj-dj)
 }
 }
 lcti ← lct’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C

C

B

A

0

estB = 1
dB = 5
ΔB = 0 5

ectB = -∞ 6

estC = 3
dC = 4
ΔC = 4

ectC = 7

ΔC = 4
ectC = 7

estA = 0
dA = 5
ΔA = 5

ectA = 5

ΔAB = 5 10
ectAB = 5 10

Δroot = 9 14
ectroot = 9 14

Θ \ {B}

lctk − dk

Not last filtering with Θ-Tree, an example

106

NotLast(T={1..n}) {
 ...
 ...
 Θ ← Θ-Tree.init({1..n})
 for (i ← Tlct) { // i ← B
 while (lcti > lctk-dk) {
 Θ.insert(k) // O(log n) time
 j ← k // lctj-dj = max {lctΩ - dΩ : Ω ⊆ NLSet(T,i)}
 k ← ite.next()
 }
 if (ectΘ\i > lcti-di) { // ectΘ\B = 9 and lctB-dB = 10
 lct’i ← min(lcti, lctj-dj)
 }
 }
 lcti ← lct’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C

C

B

A

0

lctC = 10
lctA = 10
lctB = 15

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lctk − dk

Not last filtering with Θ-Tree, an example

107

NotLast(T={1..n}) {
 ...
 ...
 Θ ← Θ-Tree.init({1..n})
 for (i ← Tlct) { // i ← B
 while (lcti > lctk-dk) {
 Θ.insert(k) // O(log n) time
 j ← k // lctj-dj = max {lctΩ - dΩ : Ω ⊆ NLSet(T,i)}
 k ← ite.next()
 }
 if (ectΘ\i > lcti-di) { // ectΘ\B = 9 and lctB-dB = 10
 lct’i ← min(lcti, lctj-dj)
 }
 }
 lcti ← lct’i, ∀i∈T
}

A

B

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C

C

B

A

0

lctC = 10
lctA = 10
lctB = 15

A

B

C

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

lctk − dk

Edge Finder

108

Edge Finding

B

C

D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

impossible to schedule {A,B,C,D}
before lct{BCD}

thus we must have {B,C,D} ≪ A

A

‣ ∀Ω⊂T, ∀i ∈ T\Ω = arbitrary non-empty subset of T

‣ estΩ∪i + dΩ∪i > lctΩ ⇒ Ω ≪ i ↝ esti ←max {esti, ectΩ} (EF)

‣ i must be scheduled after the set Ω

109

110

‣Reformulation of EF for easier implementation

∀ j ∈ T, ∀ i ∈ T \ LCut(T,j):

 ectLCut(T,j)∪i > lctj ⇒ LCut(T,j) ≪ i

 ↝ esti ← max {esti, ectLCut(T,j)} (EF’)

‣ Implementation using Θ-tree considering j and i wrt LCut(T,j)
• Θ = LCut(T,j)
• Θ-Tree.insert(i), check if ectΘ >lctj
• Θ.remove(i)

 Edge Finding

LCut(T,j) = {i | i ∈ T & lcti ≤ lctj}

O(log n) for testing one (i,j)
O(n2 log n) overall => too slow!

111

‣ect(Θ-Λ) = max({ectΘ},{ectΘ∪i : i ∈ Λ})
• earliest completion time if at most one gray activity used

‣New values stored in the nodes (in addition to Δv & ectv)
• Δv = max {pΘ’ | Θ’⊆Leaves(v) & |Θ’∩ Λ| ≤ 1}
• ectv = ectLeaves(v) = max {estΘ’+pΘ’ | Θ’⊆Leaves(v) & |Θ’∩ Λ| ≤ 1}

‣Update rule
• Δv = max {Δleft(v)+Δright(v),Δleft(v)+Δright(v)}
• ectv = max {ectright(v),ectleft(v)+Δright(v),ectleft(v)+Δright(v)}

Θ-Λ-Tree = generalization of Θ-Tree
Θ and Λ disjoint sets: Θ ∩ Λ = ∅white gray

Example

esta = 0
da = 5
Δa = 5

ecta = 5

Δa = 5
ecta = 5

estb = 25
db = 9
Δb = 9

ectb = 34
Δb = 9

ectb = 34

estc = 30
dc = 5
Δc = 0

ectc = -∞
Δc = 5

ectc = 35

estd = 32
dd = 10
Δd = 10

ectd = 42
Δd = 10

ectd = 42

Δ = 11
ect = 34
Δ = 11

ect = 34

Δ = 10
ect = 42
Δ = 15

ect = 45

Δ = 21
ect = 44
Δ = 26

ect = 49

resp

‣Θ-Λ-Tree: Θ={a,b,d} Λ={c}

112

Responsible Activities

‣For each node v we can also compute the gray activity responsible for Δv or
ectv
‣Leaf nodes:
• respΔ(i) = i if i is gray, undef otherwise
• respect(i) = i if i is gray, undef otherwise

‣ Internal nodes:
• respΔ(v) = respΔ(left(v)) if Δv = Δleft(v)+Δright(v),

 respΔ(right(v)) otherwise
• respect(v) = respect(right(v)) if ectv = ectright(v)

 respect(left(v)) if ectv = ectleft(v)+Δright(v)

 respΔ(right(v)) if ectv = ectleft(v)+Δright(v)

113

114

Complexities

Edge Finding: The big picture

4

3

2

1

lcti

Θ

Λ

j=

while (ect(Θ-Λ) > lctj) {
 i ← respect(Θ-Λ)
 esti ← max{esti,ectΘ}
 Λ ← Λ\i // O(log n)
}

Retrieve the activity of Λ
responsible

115

Edge Finding Algorithm

EdgeFinding(T={1..n}) {
 (Θ,Λ) = (T,∅) // O(n log n) time
 Tlct ← sortZA([1..n],sortKey = lct) // O(n log n) time
 ite ← iterator(Tlct)
 j = ite.next()
 while (ite.hasNext()) {
 if (ectΘ > lctj) throw InconsistencyException // overload
 (Θ,Λ) = (Θ\j,Λ∪j) // O(log n) time
 j ← ite.next()
 while (ect(Θ-Λ) > lctj) { // O(1) time
 i ← respect(Θ-Λ)

 esti ← max{esti,ectΘ}
 Λ ← Λ\i // O(log n) time
 }
 }
}

Executed at most n times

116

Fix-point

117

Reminder on Idempotency

118

Putting it all together

‣None of the algorithms above is idempotent.
‣According to Petr Vilím (see next slide), 

the following order for fixpoint computation is very efficient:

119

Bibliography

‣Most of the notation, examples, … come from 
Petr Vilím’s PhD thesis (https://vilim.eu/petr/disertace.pdf), 
where all the proofs omitted here can be found.
‣This thesis had a big impact on CP solvers because most of the algorithms

for a disjunctive resource introduced by Petr Vilím take O(n log n) time
instead of O(n2) or O(n3).

120

http://vilim.eu/petr/disertace.pdf

