Constraint
Programming

The Circuit constraint

The Circuit constraint enforces a Hamiltonian cycle on an array of successor variables.

ndices

T

The successors must clearly all be different, but this is not enough!

We must also guarantee that the array forms a proper cycle, without sub-cycles.

’Mini

The Circuit constraint

Example of violation of a Circuit constraint: there are two sub-cycles!

Successors:

Indices

’Mini

Application: TSP fin

int n;

int[][] distanceMatrix = reader.getMatrix(n, n);

Solver cp = makeSolver(false); L\\7
IntVar[] succ = makeIntVarArray(cp, n, n);

IntVar[] distSucc = makeIntVarArray(cp, n, 1000); §<£?

cp.post(new Circuit(succ));

for (int 1 = 0; 1 < n; 1++) {
cp.post(new ElementlD(distanceMatrix[i1], succ[1], distSucc[i1]));

}

IntVar totalDist sum(distSucc);

Objective obj cp.minimize(totalDist);

DFSearch dfs = makeDfs(cp, firstFail(succ));

Application: Vehicle routing

> 1 depot, 3 vehicles, 1 distance matrix.
> Visit all the customers and minimize the total distance.
» How to model this with a Circuit constraint?

’Mini

Application: Vehicle routing

> Duplicate the depot for every vehicle.

>» Now we can state a Circuit constraint by threading the tours of the vehicles
through the depots into a giant tour:

’Mini

Hamiltonian-cycle problem

> Find a cycle that visits each node in an undirected graph exactly once

> Determining whether such a cycle exists in a graph is NP-complete

/

’Mini

Achieving domain consistency for Circuit is NP-hard i

> Achieving domain consistency for a Circuit constraint is NP-hard

> Reduction from Hamiltonian cycle in an undirected graph G=(V,E):

— Introduce a variable succ; for every node i in V,
denoting the successor of node i:
D(succi) = {]: (i,j) iIn E }
— Apply domain-consistent filtering for Circuit(succi,...,succn):

* If no failure: YES! there exists a Hamiltonian cycle in G.
» Otherwise: NO! there exists no Hamiltonian cycle in G.

Constraint
Programming

NP-hard, so we want to relax the filtering

> Degree-based filtering (weaker than AllDifferent and insufficient)
> Partial-path-based filtering

10

’Mini

Degree-based filtering £

> In a Hamiltonian cycle, the in-degree and out-degree of every node are 1.
» Notation: Dj‘1 = {1 | j € D(succli])}
(set of indices of the variables with j as a possible successor)
> [f D(succli]) ={] }, then remove j from D(succl|k]) for all k # i (forward checking)
, If D].—1 = {i}, then reduce D(succ][i]) to {j }

]

D! = {3}

11 Hooker, J. N. (2012). Integrated methods for optimization

Degree-based filtering: Implementation £

> If D(succl|i]) ={] }, then remove | from D(succlk]) for all k # I

— Same as forward-checking filtering for AllDifferent.
Make it efficient with a sparse set to split fixed and unfixed variables.

- If D' ={i}, then reduce D(succli]) to{ j}

— Requires counting for each value |, the number of D(succ[i]) with element |
— Can be done incrementally during the search:

e Split values into: fixed/unfixed ones (sparse set)

e Split variables into fixed/unfixed ones (sparse set)

» Consider values | and variables i not yet in the fixed partition for the
counting

12

Degree-based filtering is weaker than AllDifferent-DC fin

> On the example below, degree-based filtering is not able to detect the
possible filtering since all in & out degrees are at least 2

> D(succ[0])={1,2}, D(succ[1])={0&R)3}, D(succ[2])={0g8)3}, D(succ[3])={1,2}

» But degree-based filtering is fast to execute

13

Again, AllDifferent-based filtering is not enough

> Since it does not prevent the creation of sub-cycles
> The degree-based filtering is also OK with this:

14

Constraint
Programming

NP-hard, so we want to relax the filtering

> Degree-based filtering (weaker than AllDifferent and insufficient)
, together with AllDifferent-DC filtering

16

Partial-path-based filtering Lo

> Filtering idea: Detect partial paths and prevent them from closing.

> A partial path is a maximal consecutive sequence of nodes (successor
variables) with a unique successor (current singleton domains).

> For example, what are the partial paths in the following graph?

17

Partial-path-based filtering Lo

> |[f a partial path has fewer than (n—1) edges, where n = #nodes,
then it must not be closed, as otherwise we would have a sub-cycle.

> The question is now: How to do this efficiently, in O(n) time?

For example, the crossed edges below were already filtered
when the nodes 4, 6, and 14 became the endpoints of their partial paths:

18

Partial-path-based filtering Lo

> |[f a partial path has fewer than (n—1) edges, where n = #nodes,
then it must not be closed, as otherwise we would have a sub-circuit.

> The question is now: How to do this efficiently, in O(n) time?

Continuing our example, the successor of 14 then became 12 and
the red partial path became longer, and AllDifferent detects succl[4] # 12:

19

Data structures £

> \We store three pieces of information for each node i:
—dest[i] = destination of the partial path starting at i (dest[i]=I If succ]i] is not fixed)
—orig[i] = origin of the partial path going through i (orig[i]=i if no succ]v] is fixed to i)
—lengthToDest[i] = number of edges from i to dest|i]

» Examples:
—dest[6]=6, orig[6]=0, lengthToDest[orig[6]]=4
— dest[8]=12, orig[12]=8, lengthToDest[8]=4 E
—dest[0]=6, orig[3]=0, lengthToDest[3]=2 % @/f

Paez!

°

20

Circuit: Updating the values in O(1) time

» Assuming the branching decision succ|6] = 8 (on backtrack: succ|[6] = 7),
the 3 updates that join the purple and red partial paths are as follows:

—dest[orig[6]] := dest[8], hence: dest[0] = 12 (but, for example, dest[3] remains 6)
—orig[dest|[8]] := orig[6], hence: orig[12] =0

—lengthToDest[orig[6]] :+= lengthToDest[8] + 1, hence: lengthToDest[0] = 9
—since 9 <15 -1, we infer: succ[12] #0

> Hence succ[12] =7, joining the @ e s
purplered & partial paths; e/

AllDifferent: succ[4] # 8

» Hence succ|4]| = 0, which L
completes the cycle

> \0

’Mini

Filtering algorithm (not idempotent!) fi

. procedure PROPAGATECIRCUIT
dest|t| < 1, Vi
orig|i| < 1, V1
lengthToDest|i| < 0, V1
fort=0ton—1do
if D(z) =1then @@ @ @& &
J + min(D(z;))
dest|origli]] < dest[j
orig[dest[j]] < orig[i

10: lengthToDest[orig[i]] - lengthToDestlorig[i]] + lengthT'oDest[j] + 1
1 S lengthToDestlorigill < n— 1then

12: . x[dest[j]].remove(origli]) :
13: end if

14: endif

15: end for
o> 16: end procedure

Can we make this algorithm incremental? £

1: procedure PROPAGATECIRCUIT

> : dest| :Z,: = Z,’ W Store each of these values in a Statelnt, so

3: 1 origr] <=1, V1 that the partial paths are restored at backtrack

L lengthToDestli] 0¥ . mme e m ’

5: fort=0ton—1do

6: if ll?_(i_lzz)_l:__l__th_e_l_l ___
7 - j <+ min(D(x)) Trigger this code only when x; is fixed

8: - dest|orig|i|| < dest|j

9: orig[dest[j]] < orig[i
10: lengthToDest[orig|i]] < lengthToDest|orig[i]] + lengthToDest[j] + 1
11: - if lengthToDest|orig[i]] < n — 1 then
12: x|dest|j||.remove(orig|t|)
13: end it
14: end if

15: end for

5 16: end procedure Overall complexity = O(number of new fixed variables) < O(n)

Constraint
Programming

Feasibility Check £

> Circuit is not feasible if there is more than one strongly connected component
(SCC) in the graph induced by the current domains.

N
=

> Compute the SCCs with the Tarjan or Kosaraju algorithm:
if there is more than one SCC, then falil.

25

Constraint
Programming

Reminder -

> A CSP is a constraint satisfaction problem:
— A triplet (X,D,C) where ...

> A COP is a constrained optimization problem:
— A quadruplet (X,D,C,)
— The objective function f is defined over a subset of the variables X
— Without loss of generality, we assume f is to be minimized.
> What we want for a COP:
Find among the feasible solutions to (X,D,C),

.e.,in §'((X, D, C)), asolution o* that minimizes f.

27

How shall we do this? £

> |dea, called branch-and-bound:
— Step 1: Find a feasible solution oo (i.e., the COP is feasible).
— Step 2: Add the constraint co £ f(0) < f(0o)

— Step 3: Continue solving.
— Step 4: At iteration i:

e If we find a feasible solution i, then tighten by adding the “betterness” constraint ¢ £ (o) < f(gi).
* If we do not find a feasible solution, then the previous solution, ci-1, is a global optimum.

— Process ends when some iteration does not find a feasible solution.

» Caveats:
— Solutions are found “deep” in the search tree.
— The “betterness” constraints must not disappear when backtracking!

28

Example: Minimization Problem

Each time a solution is found, the next one is strictly better.
Here, 9 solutions were discovered before the last, optimal one.
Notice that, after the best solution was found,

we need to continue the search in order to prove its optimality.

\ \
600 |- |

500 |

550

Objective

450 |

400 |

| | | | | | L]
5 10 15 20 25 30 35 40
Node Number

29

’Mini

Minimization in MiniCP Lo

Total cost of the QAP denoted by an objective variable

IntVar totCost sum(welightedDist);

Objective obj = cp.minimize(totCost) Creation of the objective
DFSearch dfs = makeDfs(cp, firstFail(Creation of the DFS

dfs.onSolution(() -> System.out.println("objective:" + totCost.min()));

Print obj. var. at each solution
SearchStatistics stats = dfs.optimize(obj)

Pass the objective to

DFS branch-and-bound

30

In practice

public interface Objective {

void tighten();
}

Objective ADT

’Mini

Called each time a solution is found during the search
in order to let the tightening of the bound occur
such that the next-found solution is better

public class Minimize implements Objective {

private int bound

Integer.MAX VALUE;

private final IntVar x;

public Minimize(IntVar x) {

this.x = x;

X.getSolver().onFixPoint(() -> x.removeAbove(bound));

}

public void tighten() {
X.max() - 1;

this.bound =
}

31

Pruning w.r.t. the bound is done at (the
start of) every fixpoint computation

Called when finding ©: to update the bound

Hookup of the Objective into the Solver

public class DFSearch {
private Supplier<Procedure[]> branching;
private StateManager sm;
private List<Procedure> solutionlListeners = new LinkedList<Procedure>();
private List<Procedure> failurelisteners new LinkedList<Procedure>();

public DFSearch(StateManager sm, Supplier<Procedure[]> branching) {

this.sm = sm;

this.branching = branching;
}
public void onSolution(Procedure listener){ solutionListeners.add(listener);}
public void onFaillure(Procedure listener) { fallurelListeners.add(listener);}
private void notifySolution() { solutionlListeners.forEach(s -> s.call());}
private void notifyFailure() { failurelListeners.forEach(s -> s.call());}
public SearchStatistics optimize(Objective obj) {

onSolution(() -> obj.tighten());

return solve(new SearchStatistics());

Tighten objective when finding

private void dfs(SearchStatistics statistics) { .. }

’Mini

Minimization: Summary 1

Minimization is implemented as a regular DFS that enumerates feasible
solutions under two listeners:

—onSolution: the objective bound is tightened (to the current bound minus 1);
—onFixPoint: the objective variable is restricted to be at most the bound.

33

Constraint
Programming

The Weakness of CP £

» Potentially huge search tree for optimization problems.
» Poor exploration of the search space.

— Some problems are just too hard to solve.
35 — Solution: Adopt a local search (LS) style to discover good solutions faster.

How to fix this? By local search!

» When solving gets stuck for too long without improving: restart at another place.
> Intensify the search where it looks promising.

36

’Mini

Large-Neighborhood Search (LNS) Rin

LNS = Fix + Relax + Restart

1. Find a first feasible solution S*.

2. Randomly relax S* and re-optimize under a search limit:
relax = fix some variables to their values in S™ and unfix the other variables.

3. Replace S* by the best solution found

It can be more general than that.
For example, in scheduling, good practice is:
relax = keep some of the precedences from the best solution.

37

Advantages of LNS over classical LS

> The neighborhood is large:
—No need for a meta-heuristic in order to avoid local optima.

> Modeling power of CP (declarative):
— No need for designing a complex neighborhood.
— Ease of implementation.

> Scalability of LS:
— Very good «any-time» behavior.

38

Example: How to solve QAP with LNS?

int[][] w = new int[n][n];
int[][] d = new 1int[n][n];

Solver cp = makeSolver();
IntVar[] x = makelIntVarArray(cp, n, n);
cp.post(allDifferent(x));
IntVar[] weightedDist = new IntVar[n * n];
int 1ind = 0;
for (int 1 = 0; 1 < n; 1++)

for (int J = 0; J < n; J++)

weightedDist[ind++] = mul(element(d, x[i], xX[J1), w[il[i]);

IntVar totCost = sum(weightedDist);
Objective obj = cp.minimize(totCost);
DFSearch dfs = makeDfs(cp, firstFail(x));

39

’Mini

QAP with LNS

int[][] w = new int[n][n]; // Weights

int[][] d = new int[n][n]; // Distance (reading hidden)
Solver cp = makeSolver();

IntVar[] X = makeIntVarArray(cp, n, n);

// Constraints and objective .. (hidden)

firstFail(x));
n).toArravy();

DFSearch dfs makeDfs (cp,
int[] xBest IntStream.range(0,

dfs.onSolution(() -> {
for (int 1 0; i < n;

i++)

xBest[1i] X[1].min();
})i Store and update current best solution
int nRestarts = 1000; '
int failLimit = 100;

Random rand new java.util.Random(0);
for (int i = 0; i < nRestarts; i++) {
dfs.optimizeSubjectTo(obj,

statistics -> statistics.numberOfFailures() >= failLimit,

_>{

()

’Mini

for (int j 0; J < n; J++)
1f (rand.nextInt(100) < 75)

cp.post(equal(x[]J], xBest[]]));

Fix a random 75% of variables

) ;7
40 }

