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Table Constraint

x y z

1 2 3

1 3 3

2 1 3

2 1 1

3 3 3

4 1 2

4 4 4

/** 
 * Fixing x_0 = v_0, x_1 = v_1, … is only  
 * valid if there exists a row (v_0, v_1, ...) in table. 
 */ 
public Table(IntVar[] x, int[][] table)
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(x=1 ∧ y=2 ∧ z=3) ∨ (x=1 ∧ y=3 ∧ z=3) ∨ (x=2 ∧ y=1 ∧ z=3) ∨ …

A table constraint has an enumeration of the possible 
assignments for its variables (here x, y, and z).

Semantics

Signature



• A constraint like AllDifferent([x,y,z]) is said to be intensional. The solution set 
to the constraint is implicit with the semantics of the constraint.

• To make it explicit, via an extensional formulation, aka a Table constraint, 
we list all the solutions. For D(x) = D(y) = D(z) = {0..2} we have

• For n or n–1 variables over a domain of size n, the extensional formulation 
of AllDifferent requires n! tuples. 
That is why intensional formulations are interesting.

• An extensional formulation can impose any relation on its variables. 
That is why Table constraints are interesting: 
this is the most flexible form of constraints.

Intensional vs Extensional Formulation
x y z

0 1 2
0 2 1
1 0 2
1 2 0
2 0 1
2 1 0
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If an efficient intensional constraint with a domain-consistent filtering exists 
in your CP solver, then you should probably prefer to use it rather than an 
extensional formulation of the problem constraint.



Most flexible constraint of the universe
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‣Any predicate on k variables can be turned into a table constraint
‣Just enumerate the solutions to the constraint into a table

X+Y=Z AllDifferent(X,Y,Z)

X Y Z
0 0 0
0 1 1
0 2 2
1 0 1
1 1 2
1 2 3
2 0 2
2 1 3
2 2 4

X Y Z
0 1 2
0 2 1
1 0 2
1 2 0
2 0 1
2 1 0

if X is even, then Y=2, 
else Z>0

X Y Z
0 2 0
0 2 1
0 2 2
1 0 1
1 0 2
1 1 1
1 1 2
1 2 1
1 2 2
2 2 0
2 2 1
2 2 2



Most flexible constraint of the universe
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‣A practical example is the solving of the Enigma machine.

‣Given an output and tiny clues about the input, can we find the full input and the 
settings of the Enigma machine?

‣Yes!  Using the Modulo constraint  X mod Y = Z.

Antuori V., Portoleau T., Rivière L. and Hébrard E. 
On How Turing and Singleton Arc Consistency Broke the Enigma Code. 
CP 2021.



Application: Enigma machine
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‣Composed of rotors, input = [0,3,4], encoded as [2,4,0]
‣After each input, the rotor rotates by one position
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‣ Step 0
‣ Input 0 
‣Output 2

rotate

‣ Step 1
‣ Input 3 
‣Output 4

‣ Step 2
‣ Input 4 
‣Output 0

rotate
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Application: Enigma machine
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‣ Step 0
‣ Input 0 
‣Output 2

rotate

‣ Step 1
‣ Input 3 
‣Output 4

‣ Step 2
‣ Input 4 
‣Output 0

rotate

4

0

1

2

3

0

1

2

3

4

3

4

0

1

2

0

1

2

3

4

‣T = [2,0,3,1,4] (mapping at initial position)
‣What is the output at step i for input I?  Answer: output = T[(I+i)%5]



Application: Enigma machine
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‣T = [2,0,3,1,4] (mapping at initial position)
‣What is the output at step i for input I?  Answer: output = T[(I+i)%5] = A

I i A
0 0 2
0 1 0
0 2 3
0 3 1
0 4 4
0 5 2
0 6 0
0 7 3
0 8 1
0 9 4
0 10 2
0 11 0
0 12 3
0 13 1
0 14 4
... ... ...

I i A
1 0 0
1 1 3
1 2 1
1 3 4
1 4 2
1 5 0
1 6 3
1 7 1
1 8 4
1 9 2
1 10 0
1 11 3
1 12 1
1 13 4
1 14 2
... ... ...

I i A
2 0 3
2 1 1
2 2 4
2 3 2
2 4 0
2 5 3
2 6 1
2 7 4
2 8 2
2 9 0
2 10 3
2 11 1
2 12 4
2 13 2
2 14 0
... ... ...

I i A
3 0 1
3 1 4
3 2 2
3 3 0
3 4 3
3 5 1
3 6 4
3 7 2
3 8 0
3 9 3
3 10 1
3 11 4
3 12 2
3 13 0
3 14 3
... ... ...

I i A
4 0 4
4 1 2
4 2 0
4 3 3
4 4 1
4 5 4
4 6 2
4 7 0
4 8 3
4 9 1
4 10 4
4 11 2
4 12 0
4 13 3
4 14 1
... ... ...



Application of Table constraints: 
Eternity Puzzle



‣Edge matching puzzle: place 256 square pieces into a 16x16 grid, 
constrained by the requirement to match adjacent edges. 

‣How to model this puzzle?
‣https://en.wikipedia.org/wiki/Eternity_II_puzzle

Eternity II Puzzle
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https://en.wikipedia.org/wiki/Eternity_II_puzzle


Decision variables for Eternity II
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For each position, we need 5 variables: 
- 1 variable Si (but Yi on the picture) for each of the 4 sides 
- 1 variable I for the identifier of the placed piece 

D(Si) = 

How do we model that 
(I,S1,S2,S3,S4) corresponds to a 
valid piece of the game, such as 
this one ? 



Decision variables for Eternity II
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Answer: With a Table constraint! 
Let us build it together


I S1 S2 S3 S4

14 1 2 3 4

14 2 3 4 1

14 3 4 1 2

14 4 1 2 3

1
2

3
4 14

(I,S1,S2,S3,S4) ∈ table ensures 
that it corresponds to one of the 

four rotations for this piece



Model for 4x4 Eternity II 

X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34

X41 X42 X43 X44

X51 X52 X53 X54

Y11

Y21

Y31

Y41

Y12

Y22

Y32

Y42

Y13

Y23

Y33

Y43

Y14

Y24

Y34

Y44

Y15

Y25

Y35

Y45

I11

I21

I31

I41

I12

I22

I32

I42

I13

I23

I33

I43

I14

I24

I34

I44

D(X21)={0..4} D(I11)={0..15}

u

r

d

l

tableOfPieces
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Every piece has 4 possible rotations, 
hence 4 entries per piece are created

i u r d l
9 3 3 2 2
9 3 2 2 3
9 2 2 3 3
9 2 3 3 2
6 3 3 2 2
6 3 2 2 3
6 2 2 3 3
6 2 3 3 2

...

15 0

0

14

0

13

0

12

0

4110 411

4321

4321

11 01098 3320 332

3 0210 4440 444

7 0654 3220 322

000 0

1234

1321

1321

1234

2

92 3

3



Model for 4x4 Eternity
X11 X12 X13 X14

X21 X22 X23 X24

X31 X32 X33 X34

X41 X42 X43 X44

X51 X52 X53 X54

Y11

Y21

Y31

Y41

Y12

Y22

Y32

Y42

Y13

Y23

Y33

Y43

Y14

Y24

Y34

Y44

Y15

Y25

Y35

Y45

I11

I21

I31

I41

I12

I22

I32

I42

I13

I23

I33

I43

I14

I24

I34

I44

D(X21)={0..4} D(I11)={0..15}

Each square contains a valid piece: 
[I33,X33,Y34,X43,Y33] ∈ tableOfPieces

All the pieces are placed and each can be placed only once: 
AllDifferent(I11,I12,…,I44) 

All the positions are occupied with valid pieces 
(Ii,Xi,j ,Yi,j+1,Xi+1,j,Yi) ∈ tableOfPieces ∀ i,j ∈ [1..4]x[1..4]
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tableOfPieces

i u r d l
9 3 3 2 2
9 3 2 2 3
9 2 2 3 3
9 2 3 3 2
6 3 3 2 2
6 3 2 2 3
6 2 2 3 3
6 2 3 3 2

...



Application of Table constraints: 
Regular (Automaton) constraint 

for rostering problems



Rostering problems
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Nurse Rostering 
Problem (NRP)

NRP is the problem of finding an optimal way to assign 
nurses to shifts, typically with a set of hard constraints which 
all valid solutions must follow, and a set of soft constraints 
which define the relative quality of valid solutions. 
https://en.wikipedia.org/wiki/Nurse_scheduling_problem

Examples of (horizontal) constraints for NRP: 

✓ A nurse cannot work the day shift, night shift, and 
late-night shift on the same day (i.e., no 24-hour duties). 

✓ A nurse may go on a holiday and will not work shifts then. 
✓ A nurse cannot do a late-night shift followed by a day shift 

the next day. 
✓ … 

Typically, each such constraint gives rise to a regular expression.
Demand

Tue Wed

≥2 ≥1 ≥3

Mon

https://en.wikipedia.org/wiki/Hard_constraint
https://en.wikipedia.org/wiki/Nurse_scheduling_problem


How to enforce rostering constraints?
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0

1

2

4 5
3

2

1

5

Some examples of constraints are: 

✓ A nurse cannot work the day shift, night shift, and 
late-night shift on the same day (i.e., no 24-hour duties). 

✓ A nurse may go on a holiday and will not work shifts then. 
✓ A nurse cannot do a late-night shift followed by a day shift 

the next day. 
✓ … 

Typically, each such constraint gives rise to a regular expression.

💡By aggregating them into one automaton (implementation of 
regular expression), with transitions and accepting states

The question is: How do we model  in CP an automaton and 
the acceptance of a string of variables by an automaton?



(x,y,z) ∈ Language(A)

Regular constraint

0

1

2

4 5
3

2

1

T 0 1 2 3 4 5

0 0 1 2

1 1 2

2 2

The model:  

Sx = state after reading variable x

Sy = state after reading variables x and y

Sz = state after reading variables x, y, and z

T[s][v] = state after reading at state s the symbol v 

Sx = T[0][x]

Sy = T[Sx][y], encode Element2D via Table

Sz = T[Sy][z], encode Element2D via Table

Sz ∈ {0, 2}

Constraint: (x,y,z) is a word accepted (at a green state) by the deterministic automaton A, with start state 0. 

5

states

symbols

18

A:



‣Can be modelled with (x,y,z) ∈ table

‣ If we have a domain-consistent filtering for Table, 
then we also have one for Element2D.
‣Element2D can be encoded with a Table constraint.

Element2D: T[x][y] = z

x

y x y T[x][y]
0 0 1
0 1 8
0 2 9
0 3 6
1 0 1
1 1 9
1 2 2
1 3 4
2 0 9
2 1 8
2 2 9
2 3 8
3 0 1
3 1 9
3 2 2
3 3 5

0 1 2 3

0 1 8 9 6

1 1 9 2 4

2 9 8 9 8

3 1 9 2 5

table

19



Filtering a Table constraint: 
slow algorithm



Table constraint x y z

1 2 3

1 3 3

2 2 3

3 3 3

2 1 1

4 1 2

4 4 4

// x.length = n, dim(table) = m x n 
public Table(IntVar[] x, int[][] table)
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‣ A tuple (table row) is valid iff 
all its values are in the domains of the corresponding variables:


• valid(table[r]) ≡ ∀i : table[r][i] ∈ D(x[i])


‣ Literal (x[i],v) is supported iff 
there is a valid tuple with value v in column i:


• ∃r : valid(table[r]) ∧ table[r][i] = v


‣ Example: D(x) = {1,2},  D(y) = {1,2,3},  D(z) = {1,2,3}


• (z,3) is supported, 
but (z,2) is not supported and hence 2 must be removed from D(z).

invalid



// x.length=n, dim(table)= m x n 
public Table(IntVar[] x, int[][] table)

A first, slow (but domain-consistent) filtering

SlowTableFiltering(x,table) {
for (xi <- x){
    for (v <- D(xi)){

if (∄r:∀j≠i:table(r,j)∈D(xj) ∧ table(r,i)=v){
           D(xi) <- D(xi) \ {v}
         } 

 }
}
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Slow Table filtering: implementation in MiniCP

should use 
your fillArray 

here
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public void propagate() throws InconsistencyException { 
  for (int i = 0; i < x.length; i++) { 
    for (int v = x[i].getMin(); v <= x[i].getMax(); v++) { 
        if (x[i].contains(v)) {You 
          boolean supported = false; 
          for (int tupleIdx = 0; tupleIdx < table.length &&  
                                 !supported; tupleIdx++) { 
              if (table[tupleIdx][i] == v) { 
                  boolean allSupported = true; 
                  for (int j = 0; j < x.length && allSupported; j++) { 
                      if (!x[j].contains(table[tupleIdx][j])) { 
                          allSupported = false; 
                      } 
                     } 
                  supported = allSupported; 
              } 
          } 
          if (!supported) 
              x[i].remove(v); 
      } 
    } 
  } 
}



Filtering a Table constraint: 
the STR algorithm family



Simple Tabular Reduction (STR) algorithms x y z

1 2 3

1 3 3

2 2 3

3 3 3

2 1 1

4 1 2

4 4 4

• Lecoutre, Christophe.  STR2: Optimized simple tabular reduction 
for table constraints.  Constraints, 2011.
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Simple Tabular Reduction (STR) algorithms: 

1. For each tuple in the table:


• The tuple is valid ⇒ all its values are in supported literals, so: 
collect the supported literals in a set.


• Example: (1,2,3) is valid ⇒ (x,1), (y,2), and (z,3) are supported.


• The tuple is invalid: 
remove it (in a stateful way) from the table, 
giving a smaller table, hence incrementality.


2. For each literal (xi,v): 
   if it is not supported (check in the collected set of literals), then remove v from D(xi). 



STR2 algorithm
STR2Filtering(x,table) {

supported = Ø
for (t <- table) {

if (∀i: xi.contains(t(i))) {
for (xi <- x){

supported += (xi,t(i))
}

} else {
table.remove(t)

}
}

  for (xi <- x) {
     for (v <- D(xi)) {

if ((xi,v)∉supported) {
           D(xi) <- D(xi) \ {v}
         } 

 }
 }

if tuple is valid

literals collected

remove unsupported

else: tuple removed

26



Incrementality of STR2

P1

P2 P3

tuple (1,4,4) valid for (x,y,z)

y = 3

(1,4,4) invalid 
(1,4,4) removed

y != 3
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‣ Incrementality of STR2 comes from the table.


– Invalid tuples are removed from the table.


– If a tuple is removed, then it is not inspected in future executions.


‣ The table has to be stateful (aka reversible), using the state manager, which restores the state on backtrack.



STR2 needs a stateful table
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‣ Use a stateful table (details omitted here) to represent the table.


‣ All that needs to be backtracked on is just one integer, a StateInt, 
denoting the current number of valid tuples in the table, 
which are stored before the row having that StateInt as index



Assume D(x)={1,2}, D(y)={1,2,3}, D(z)={1,3} now:

Stateful table

x y z

1 2 3

1 3 3

2 2 3

2 1 1

3 3 3

4 1 2

4 4 4

The table is partitioned into two sets:

size

the remaining tuples are 
before size 

the removed tuples are
from size on 

StateInt

29



Assume 3 is removed from D(y), giving D(x) = {1,2},  D(y) = {1,2},  D(z) = {1,3}:

Stateful table

x y z

1 2 3

1 3 3

2 2 3

2 1 1

3 3 3

4 1 2

4 4 4

sizesc
an

 d
ire

ct
io

n

swap
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When a tuple is removed:
• it is swapped with the one in position size–1
• size is decremented



Assume 3 is removed from D(y), giving D(x) = {1,2},  D(y) = {1,2},  D(z) = {1,3}:

Stateful table

size

31

When a tuple is removed:
• it is swapped with the one in position size-1
• size is decremented

x y z

1 2 3

2 1 1

2 2 3

1 3 3

3 3 3

4 1 2

4 4 4



Assume restoration to previous state, with D(x) = {1,2},  D(y) = {1,2,3},  D(z) = {1,3}:

Stateful table

size

32

x y z

1 2 3

2 1 1

2 2 3

1 3 3

3 3 3

4 1 2

4 4 4

On backtracking (sm.restoreState()): restoring size
• restores the removed tuples
• at possibly different positions in the table



Filtering a Table constraint: 
the Compact Table algorithm



Compact Table: filtering to domain consistency
Demeulenaere, J., Hartert, R., Lecoutre, Ch., Perez, G., Perron, L., 
Régin, J.-C., & Schaus, P.   Compact-table: Efficiently filtering table 
constraints with reversible sparse bit-sets.  CP 2016.
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‣ It is the most efficient known algorithm for filtering a Table constraint 
to domain consistency.


‣ It relies on bitwise operations using a data structure 
called reversible/stateful sparse bit set.


‣ It is easy to implement (quite similarly to STR2).



Compact Table
Assume D(x) = D(y) = D(z) = {1,2,3,4,5} in the meantime: 
what filtering happens now?

35

index x y z
0 7


2

5 8

1 2 1 4
2 1 3 2
3 2 4 2
4 6 5 9
5 7 7 8
6 4 2 1
7 1 1 1
8 7 8 9
9 8 9 6
10 2 2 3
11 0 0 0
12 3 3 1
13 5 8 5
14 9 7 7
15 2 3 1

Initial list of 
allowed tuples



Precomputation of support bit sets
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‣

index x y z
supports

x=1 x=2 x=3 … z=5
0 7


2

5 8 0 0 0 0

1 2 1 4 0 1 0 0
2 1 3 2 1 0 0 0
3 2 4 2 0 1 0 0
4 6 5 9 0 0 0 0
5 7 7 8 0 0 0 0
6 4 2 1 0 0 0 0
7 1 1 1 1 0 0 0
8 7 8 9 0 0 0 0
9 8 9 6 0 0 0 0
10 2 2 3 0 1 0 0
11 0 0 0 0 0 0 0
12 3 3 1 0 0 1 0
13 5 8 5 0 0 0 1
14 9 7 7 0 0 0 0
15 2 3 1 0 1 0 0

D(x) = D(y) = D(z) = {1,2,3,4,5}

Every bit supports(xi,v)(r) is computed 
when posting the constraint: 

• 1 if table[r][i]=v 
• 0 otherwise

Can we identify the valid tuples (green ones) 
from the supports(xi,v) bit sets?

Bit Sets



Computation of each validTuples(r)
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validTuples = 

 (supports(x,1) | supports(x,2) | supports(x,3) | supports(x,4) | supports(x,5)) & 
 (supports(y,1) | supports(y,2) | supports(y,3) | supports(y,4) | supports(y,5)) & 

 (supports(z,1) | supports(z,2) | supports(z,3) | supports(z,4) | supports(z,5))

index validTuples x y z
supports 

x=1 x=2 x=3 … z=5
0 0 7


2

5 8 0 0 0 0

1 1 2 1 4 0 1 0 0
2 1 1 3 2 1 0 0 0
3 1 2 4 2 0 1 0 0
4 0 6 5 9 0 0 0 0
5 0 7 7 8 0 0 0 0
6 1 4 2 1 0 0 0 0
7 1 1 1 1 1 0 0 0
8 0 7 8 9 0 0 0 0
9 0 8 9 6 0 0 0 0
10 1 2 2 3 0 1 0 0
11 0 0 0 0 0 0 0 0
12 1 3 3 1 0 0 1 0
13 0 5 8 5 0 0 0 1
14 0 9 7 7 0 0 0 0
15 1 2 3 1 0 1 0 0

If row r is supported, then 1, else 0



Compact Table: domain-consistency filtering
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Goal: remove values not supported anymore

CompactTableFiltering(x,table) {
for (xi <- x) {
    for (v <- D(xi)) {

if (validTuples & supports(xi,v) = 0) {
           D(xi) <- D(xi) \ {v}
         } 

 }
 }
}

validTuples & supports(xi,v) = 0  
(where 0 is the all-zero bit set) is implemented 

in the Java class BitSet using method intersects



Compact Table: filtering example
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index validTuples x y z
supports 

x=5 y=5 z=5
0 0 7


2

5 8 0 1 0

1 1 2 1 4 0 0 0
2 1 1 3 2 0 0 0
3 1 2 4 2 0 0 0
4 0 6 5 9 0 1 0
5 0 7 7 8 0 0 0
6 1 4 2 1 0 0 0
7 1 1 1 1 0 0 0
8 0 7 8 9 0 0 0
9 0 8 9 6 0 0 0
10 1 2 2 3 0 0 0
11 0 0 0 0 0 0 0
12 1 3 3 1 0 0 0
13 0 5 8 5 1 0 1
14 0 9 7 7 0 0 0
15 1 2 3 1 0 0 0

D(x)={1,2,3,4,5}

D(y)={1,2,3,4,5}

D(z)={1,2,3,4,5}

validTuples & supports(x,5) = 0
validTuples & supports(y,5) = 0
validTuples & supports(z,5) = 0



Update of validTuples when a domain change occurs

40

‣Assume 1 and 2 are now removed from D(x) = {1,2,3,4}.

‣We first need to update validTuples.  There are two possible strategies: 

1. From scratch, based on the remaining values of all variable domains: 
    D(x) = {3,4} and D(y) = D(z) = {1,2,3,4}. Same as the initial computation: 

validTuples = (supports(x,3) | supports(x,4)) & (supports(y,1) | supports(y,2) | 
supports(y,3) | supports(y,4)) & (supports(z,1) | supports(z,2) | supports(z,3) | 
supports(z,4))

2. Incrementally, based on the modified variable domain: D(x) = {3,4}.

validTuples = validTuples & (supports(x,3) | supports(x,4))

Indeed, dropping the influence of bit set a on the bit set (a | b) & c, 
so as to get b & c, can also be done by computing ((a | b) & c) & b.



Underlying data structure:  
the StateSparseBitSet API



‣The update requires having a stateful validTuples bit set: 
it must recover on backtrack (sm.restoreState, …).

‣We introduce a data structure called StateBitSet 
that encapsulates an array of StateLong (of 64 bits each).

‣This data structure represents validTuples:

Compact Table and state restoration

words = StateLong[ ]
validTuples: StateBitSet

In practice, assume 
Long of 64 bits ;-)

42

index validTuples
0 0
1 0
2 0
3 0
4 0
5 0
6 1
7 0
8 0
9 0

10 0
11 0
12 1
13 0
14 0
15 0

w
ords[0]

w
ords[1]

w
ords[2]

w
ords[3]



Can we further improve the efficiency?
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Yes, as bitwise operations do not need to be computed on words that are zero!

CompactTableFiltering(x,table) {
 for (xi <- x) {
    for (v <- D(xi)) {

if (validTuples & supports(xi,v) = 0) {
           D(xi) <- D(xi) \ {v}
        } 

  }
  }
}

Index validTuples x y z supports(y,1)
0 0 7


2

5 8 0

1 0 2 1 4 1
2 0 1 3 2 0
3 0 2 4 2 0
4 0 6 5 9 0
5 0 7 7 8 0
6 1 4 2 1 0
7 0 1 1 1 1
8 0 7 8 9 0
9 0 8 9 6 0
10 0 2 2 3 0
11 0 0 0 0 0
12 1 3 3 1 0
13 0 5 8 5 0
14 0 9 7 7 0
15 0 2 3 1 0

D(x) = {3,4},  D(y) = {1,2,3,4} = D(z)

w
or

ds
[0

]
w

or
ds

[1
]

w
or

ds
[2

]
w

or
ds

[3
]



‣ Use an internal sparse set for the state

‣ Goal: maintain the set of indices of non-zero words


‣ If a word becomes zero, then it is swapped with the last non-zero word


‣ Restoration requires only the size variable to be restored

How can we do that efficiently?

44

0 1 3 5 2 7 6 4

0 5 3 1 2 7 6 4

nonZeroSize:0 5 3 1 2 7 6 4

nonZeroIdx:

nonZeroIdx:

nonZeroIdx:

nonZeroSize:

nonZeroSize: 4

3

4

currently in the set not currently in the set



‣Yes, as the last intersecting word is more likely to intersect again
‣Remember the index, called residue, of the last word that led to a non-empty 

intersection and try it first for the next intersection test with some supports(xi,v)

Can we even further improve the efficiency?

boolean intersects(validTuples,supports[x,v]) {
  residue = support[x,v].residue
  if (validTuples.words[residue] & supports[x,v].words[residue] != 0L)
    return true
  i = nonZeroSize
  while (i > 0){
    i = i - 1
    wordIdx = nonZeroIdx[i]
    if (validTuples.words[wordIdx] & supports[x,v].words[wordIdx] != 0L){
      supports[x,v].residue = wordIdx
      return true
    }
  }
  return false
}

residue = int value (cache) that remembers the last 
word proving non-empty intersection:  

O(1) check instead of O(|words|)

45

new last-known intersecting 
word, hence new residue



All this can be implemented in a data structure called StateSparseBitSet, 
with the following API:

How can we do that efficiently?
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mask.clear() // empty the bit set
mask.or(supports[x,a]) // mask = mask | supports[x,a]
validTuples.and(mask) // words = words & mask
validTuples.intersects(supports[x,c]) // words & supports[x,c] != 0L



Update validTuples with StateSparseBitSet API
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validTuples = validTuples & (supports(x,3) | supports(x,4))

1. mask.clear()

2. mask.or(supports[x,3])

3. mask.or(supports[x,4])

4. validTuples.and(mask)



Filtering validTuples with StateSparseBitSet API
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Is x=3 still possible?

1. answer = validTuples.intersects(supports[x,3])

2. if (!answer) { x.remove(3)}



‣Set: collection of objects

‣BitSet: uses bits (one dedicated bit per object) to represent the presence  
(bit set to 1) or absence (bit set to 0) of an object in the set

‣Sparse: optimized to avoid computations on empty parts of the data structure

‣State: allow automatic restoration to a previous saved state

StateSparseBitSet 
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