Constraint
Programming

_Table Constraint

A table constraint has an enumeration of the possible

assignments for its variables (here X, y, and z).

Semantics

(X=1 Ay=2 Az=3) v (X=1 Ay=3 A z=3) v (X=2 A y=1 A z=3) v ...

Signature

/ kK

* Fixing x 0 = v 0, x 1 =v_1, .. 1s only

* valid 1f there exists a row (v_0, v_1, ...) 1n table.
*/

public Table(IntVar[] x, int[][] table)

’Mini

Intensional vs Extensional Formulation

- A constraint like AllDifferent([X,y,z]) is said to be intensional. The solution set
to the constraint is implicit with the semantics of the constraint.

-+ To make it explicit, via an extensional formulation, aka a Table constraint,

we list all the solutions. For D(x) = D(y) = D(z) ={0..2} we have \J
- For n or n—1 variables over a domain of size n, the extensional formulation

of AllDifferent requires n! tuples.

That is why intensional formulations are interesting.

+ An extensional formulation can impose any relation on its variables.
That is why Table constraints are interesting:
this is the most flexible form of constraints.

’Mini

Most flexible constraint of the universe £

» Any predicate on k variables can be turned into a table constraint
» Just enumerate the solutions to the constraint into a table

If Xis even, then Y=2,

X+Y=Z else Z>0 AlIDifferent(X,Y,Z)

X Y Z X Y Z X Y y 4
0 0 0 0 2 0 0 1 2
0 1 1 0 2 1 0 2 1
0 2 2 0 2 2 1 0 2
‘ 01 0 1 1 2 0
1 2 0 2 2 0 1
2 3 1 1 2 1 0

0 2 1 2

1 3 2 1

2 4 2 2

2 0

2 1

4 2 2

Most flexible constraint of the universe L

> A practical example is the solving of the Enigma machine.

> Given an output and tiny clues about the input, can we find the full input and the
settings of the Enigma machine?

> Yes! Using the Modulo constraint X mod Y = Z.

Application: Enigma machine

» Composed of rotors, input = [0,3,4], encoded as [2,4,0]
> After each input, the rotor rotates by one position

» Step O > Step 1 > Step 2
> Input O > Input 3 > Input 4
> Qutput 2 > Output 4 > Qutput O

’Mini

2
4

Application: Enigma machine

> T =[2,0,3,1,4] (mapping at initial position)
> \What is the output at step i for input 1?7 Answer: output = T[(I+1)%5]

» Step O
> Input O
> Output 2

2
4

> Step 1 > Step 2
> Input 3 > Input 4
> Output 4 > Output O

’Mini

’Mini

Application: Enigma machine

> T =[2,0,3,1,4] (mapping at initial position)

=A

> What is the output at step i for input 1?7 Answer: output = T[(1+1)%5]

Application of Table constraints:
Eternity Puzzle

Eternity Il Puzzle

» Edge matching puzzle: place 256 square pieces into a 16x16 grid,
constrained by the requirement to match adjacent edges.

x] R/
g ‘€ vt ,.-A

>

A

|

23 00 |

_/\'I

.‘|
el TK
host T 2L A

B VY A
v, MO8
o

X ?ﬁ,(
\? %x
g DA DA

| V
2. [

> https://en.wikipedia.org/wiki/Eternity Il _puzzle

10

’Mini

https://en.wikipedia.org/wiki/Eternity_II_puzzle

Decision variables for Eternity |l £

‘ Q ‘-
For each position, we need 5 variables:
- 1 variable Si (but Yi on the picture) for each of the 4 sides

@ b - N \ *\:\\ | N, = 1 variable | for the identifier of the placed piece
& -~e I €
i, ' |

x>
q

-
*
-
-’

.

How do we model that

(1,81,52,53,S4) corresponds to a
valid piece of the game, such as

11

Decision variables for Eternity |l £

Answer: With a Table constraint!
Let us build it together

=

o : | l S1 S2 S3 S4

®~\ Qg - 14 : > 3 4
e \ - * N P . O S SO USSR SO

ety g - 0*\ . 14 2 3 4 1

—— 14 3 4 1 0

[q 14 4 1 2 3

.

(1,51,52,S3,S4) < table ensures

that it corresponds to one of the
four rotations for this piece

12

Model for 4x4 Eternity Il o O Lo
D(X21)={0..4} D(111)={0..15} O.g.dbi {tableOfPieces
X11 X12 X14
R ;l: ;l: ;l: 7' Q-g-*a Lurdl

Y|I1< Y12 Y13 113 Y14 >Y||5 % T '
>|< >|< >|< 00000
Y22 Y23 123 Y24 Y25 - -_%-,4 b% ﬁ
|< >|< >|< >| °0a000
Y32 Y33 133 Y34 Y35
Y4|11< Y42 Y43 143 Y44 >Y4|15

IZX51XIZ MXMN Every piece has 4 possible rotations,

13 hence 4 entries per piece are created

Model for 4x4 Eternity

D(X21)={0..4} D(I11)—{O .15}

Each square contains a valid piece:
[133,X33,Y34,X43,Y33] € tableOfPieces

14

’Mini

All the pieces are placed and each can be placed only once:
AllDifferent(l111,112,...,144)

All the positions are occupied with valid pieces
(i, Xi,j , Yij+1,Xi+1,j, Yij) € tableOfPieces Vv i,j € [1..4]x[1..4]

tableOfPieces
Turdl

Application of Table constraints:
Regular (Automaton) constraint
for rostering problems

Roster : 01 Apr 2008 - 01 May 2008
Fle Vew Roster Took Heb
3 D4 A A Stabs woRdNGROSTER = | P 3

Hosler Personesl Shits Cover

Emplo s Nights § § M|T W T F & 8 M T T F 8 &8 M T £ 8 P
D 1120 2 "X N €E E E E E E E N N
Sosta, C 0 1200 0 o Y "X R 288 "R " X |
0 1520 : 5 0 E E AR X ¢ ¢ ¢
Davidsor D 168 21 | N N N N N N Nl N N N N N N NS N NN N N N
Ednarde 0 128 : N 8 a8a88 aaaa a8 0
; ; ‘ : L N N r o= N N o 0
L a888@ | £ ey (05:00-14.00) E/El ElE|E E
€] E| E Lt 8 8 (W o erooirm h o 2
N N N N L Labe (14:00-22:00 N N N N

N Ngre (22:00.06:00)
: : : [. 080 e a8 aaaa a8
King. Kar 0 1120 0 El [aaa & i g1if g € aaa v

‘-
>

“
m
m
m
m
m
m
m
P

m

L

o =~ B
= m =&

3 H < Theb >
Shalle Score ~over provides 4 Copy tried
Al E (0600 -14:00 ¢ 3 3 3 3 2 2 3 3 3 3 3 2 25 Paste Crrkby 2 3 3 3 3 3 2 1 2

ol L (“m . 22:00) 3 3 3 3 ‘ - 3 3 3 3 3 P : 3 B 3 3 5 4 2 3 3 3 3 3 F F. L v

Violstora for Felds, Frark or Fiedst Frark ~
13/04/2006 " - -
Nera nsiraint Score Weght Details ~
X J Max consecutive working weekends 0 10000 Requests max 2 conseculive working weekends
Requait
Nero XA 7 Max working weekends 0 10000 Requests max 2 working weekends
X 7 Max sh®s per day D 10000 Requests max 1 shfis a day
) B 4 Max shMs per week : 10000 & max 5 shfis per week
r B 4 Max consecutive workng days) 10000 Requests max 5 conseculve working days
X7 M conseculive working days : 10000 Requests min 2 consecutive working days
X J M conseculive shift types 1 10000 Requests min 2 conseculive £ shifts
Reguests min 2 consecutive 1" shifts
Requests min 2 consecutive L' shifis
Reocwests min 2 conseculive N shifts v
& ¥ 2 framt

SCore: 0

Rostering problems

Nurse Rostering

Problem (NRP)

Mon Tue Wed

‘

5% ™
.‘ ‘-j/ —

I—"

e

* . .
4 ai(+)
. éj
e

Demand 2 >1 >3

\

16

’Mini

NRP is the problem of finding an optimal way to assign
nurses to shifts, typically with a set of hard constraints which
all valid solutions must follow, and a set of soft constraints
which define the relative quality of valid solutions.
https://en.wikipedia.org/wiki/Nurse_scheduling_problem

Examples of (horizontal) constraints for NRP:

v" A nurse cannot work the day shift, night shift, and
late-night shift on the same day (i.e., no 24-hour duties).

v" A nurse may go on a holiday and will not work shifts then.

v" A nurse cannot do a late-night shift followed by a day shift
the next day.

V...

Typically, each such constraint gives rise to a regular expression.

https://en.wikipedia.org/wiki/Hard_constraint
https://en.wikipedia.org/wiki/Nurse_scheduling_problem

How to enforce rostering constraints? L

® By aggregating them into one automaton (implementation of

regular expression), with transitions and accepting states
Some examples of constraints are:

v" A nurse cannot work the day shift, night shift, and
late-night shift on the same day (i.e., no 24-hour duties).

v" A nurse may go on a holiday and will not work shifts then.

v" A nurse cannot do a late-night shift followed by a day shift
the next day.

V...

Typically, each such constraint gives rise to a regular expression.

The question is: How do we model in CP an automaton and
the acceptance of a string of variables by an automaton?

17

Regular constraint

(X,y,2) € Language(A)

S

Constraint: (Xx,y,z) is a word accepted (at a green state) by the deterministic automaton A, with start state 0.

symbols The model:

Sx = state after reading variable x

Sy = state after reading variables x and y

Sz = state after reading variables x, y, and z
T[s][v] = state after reading at state s the symbol v

states
Sx = T[0][x]

Sy = T[SX][y], encode Element2D via Table
Sz = T[Sy][z], encode Element2D via Table
Sz e {0, 2}

18

’Mini

Element2D: T[x]ly] = z

» Can be modelled with (x,y,z) € table table
y

—_l

LIO OO | O

> If we have a domain-consistent filtering for Table,
then we also have one for Element2D.

» Element2D can be encoded with a Table constraint.
19

WINNI=2OWIN 2O WIN OO
OOIN OO0 ~ANDNO|=+00)|CO |

W IW[IW [W IN|IN|IN|DN

’Mini

%ﬂ NI

Filtering a Table constraint:
slow algorithm

Table constraint

// X.length = n, dim(table) = m X n
public Table(IntVar[] x, int[][] table)

> A tuple (table row) is valid iff
all its values are in the domains of the corresponding variables:

e valid(table[r]) = vi : table[r][i] € D(x][i])

invalid /
> Literal (x[i],v) is supported iff X

there Is a valid tuple with value v in column i:
e Jr: valid(table[r]) A table[r][i] = v
> Example: D(x) = {1,2}, D(y) ={1,2,3}, D(z) ={1,2,3}

e (z,3)is supported,
>4 but (z,2) is not supported and hence 2 must be removed from D(2z).

X Yy Z

’Mini

A first, slow (but domain-consistent) filtering

// X.length=n, dim(table)= m x n
public Table(IntVar[] x, int[][] table)

SlowTableFiltering(x,table) {
for (xi <- x){
for (v <- D(xi)){
1t (Ar:Vj=i:table(r,j)eD(x;) A table(r,i1)=v){
D(xi) <- D(xi) \ {v}
}

22

’Mini

Slow Table filtering: implementation in MiniCP

public void propagate() throws InconsistencyException {
for (int 1 = 0; 1 < x.length; i++) {
for (int v = x[i].getMin(); v <= x[i].getMax(); v++) {
if (x[i].contains(v)) {You
boolean supported false;
for (int tupleldx = 0; tupleldx < table.length &&
lsupported; tupleldx++) 1
if (table[tupleIdx][i] == v) {
boolean allSupported = true;
for (1nt j = 0; j < x.length && allSupported; j++) «
if (!x[j].contains(table[tupleIdx][j]1)) {
allSupported = false,;
}

}
supported = allSupported;

I3

s

if (!supported)
x[i].remove(v);

should use

your fillArray
here

’Mini

Filtering a Table constraint:
the STR algorithm family

Simple Tabular Reduction (STR) algorithms i

Simple Tabular Reduction (STR) algorithms:
1. For each tuple in the table:

e The tuple is valid = all its values are In supported literals, so:
collect the supported literals in a set.

e Example: (1,2,3) is valid = (x,1), (y,2), and (z,3) are supported.

 The tuple is invalid:
remove it (in a stateful way) from the table,
giving a smaller table, hence incrementality.

2. For each literal (xi,v):
if it is not supported (check in the collected set of literals), then remove v from D(xi).

25

STR2 algorithm

STRZ2F1ltering(x,table) {
supported = 0@
for (t <- table) {
1f (Vi: xi.contains(t(i))) {
for (xi <- x){
supported += (xi,t(1))
}
} else {
table.remove(t)

¥
¥
for (xi <- x) {
for (v <- D(xi)) {
1f ((xi,Vv)é&supported) {
D(xi) <- D(xi) \ {v}
$

260

— if tuple is valid

f————» literals collected

}————» else: tuple removed
r————> remove unsupported

’Mini

Incrementality of STR2Z Lo

» Incrementality of STR2 comes from the table.
— Invalid tuples are removed from the table.
— |f a tuple is removed, then it is not inspected in future executions.

> The table has to be stateful (aka reversible), using the state manager, which restores the state on backtrack.

tuple (1,4,4) valid for (x,y,z)

(1,4,4) invalid
(1,4,4) removed

27

STR2 needs a stateful table -

» Use a stateful table (details omitted here) to represent the table.

> All that needs to be backtracked on is just one integer, a Statelnt,
denoting the current number of valid tuples in the table,
which are stored before the row having that Statelnt as index

28

Stateful table

Assume D(x)={1,2}, D(y)={1,2,3}, D(z)={1,3} now:

The table is partitioned into two sets:

the remaining tuples are
before size

s1ze

e

the removed tuples are
from size on

29

’Mini

Stateful table

Assume 3 is removed from D(y), giving D(x) = {1,2}, D(y) = {1,2}, D(z) = {1,3}:

X Yy Z

When a tuple 1s removed:
e 1t 1s swapped with the one 1n position size-1
swap °* size 1S decremented

scan direction
>

s1ze

30

’Mini

Stateful table

Assume 3 is removed from D(y), giving D(x) = {1,2}, D(y) = {1,2}, D(z) = {1,3}:

X Yy Z

1 2 3

27 1 1 When a tuple 1s removed:
e 1t 1s swapped with the one 1n position size-1

. e s1ze 1s decremented
2 2 3 S1Ze

31

’Mini

Stateful table

Assume restoration to previous state, with D(x) = {1,2}, D(y) = {1,2,3}, D(z) = {1,3}:

On backtracking (sm.restoreState()): restoring size
e restores the removed tuples
e at possibly different positions in the table

s1ze

32

’Mini

Filtering a Table constraint:
the Compact Table algorithm

Compact Table: filtering to domain consistency L

> |t Is the most efficient known algorithm for filtering a Table constraint
to domain consistency.

> [t relies on bitwise operations using a data structure
called reversible/stateful sparse bit set.

> |t is easy to implement (quite similarly to STR2).

34

Compact Table

iIndex X y Z

0 14 5 8
______________ 1214
______________ 2 132
3 | 2 4 2
4 | 6 5 9
5 | 7 7 8
______________ 6 421
""""""" 7 1 1 1
8 | 78 9
""""""" o | 8 9 6
"""""" 0 | 2 2 3
"""""" 1 | 0 0 0
12 | 3 3 1
"""""" 13 | 5 8 5
"""""" 4 | 9 7 7
"""""" 5 | 2 3 1

35

’Mini

Assume D(x) = D(y) = D(z) = {1,2,3,4,5} in the meantime:

what filtering happens now?

Initial list of

allowed tuples

Precomputation of support bit sets

36

supports
index X Yy | Z oo s S
x=1 | x=2 X=3 Z=
___________ o |7 5 8|0 00 0
___________ 1 |2 414 4/ 0 1 0 i 0
___________ 2 |1 8 21 0 0 0
___________ 3 |2 4 2] 0 1 :0 i 0
___________ 4 |6 5 90 0 o0 i 0
___________ 5 7 7 8| o0 00 i 0
___________ 6 /4 2 110 o0 {0 ;i 0
___________ 7 |1 1 11 0 o0 0
___________ 8 /7 8 9/ 0 0 : 0 0
___________ o |8 9 6| 0 0 i o0 i 0
_________ 0 |2 2 38|/ 0 1 0 i 0
_________ 1 /0 0 0l O 0 o0 i 0
_________ 12 |8 8 1/ 0 0 i1 ¢ 0
_________ 13 |5 8 5| 0 0 i o0 & 1
_________ 14 |9 7 7|0 o0 0 ;i 0
15 | 2 3 1 0 1 0 0

Bit Sets

D(x) = D(y) = D(z) = {1,2,3,4,5}

Every bit supports(xi,v)(r) is computed
when posting the constraint:

® 1 if table[r][i]=v

® O otherwise

Can we identify the valid tuples (green ones)
from the supports(xi,v) bit sets?

’Mini

Computation of each validTuples(r)

37

index vaIidTupIes X)" Z I supports """""""""

x=1 x=2:x=3: ... z=5
o | 0 |7 5 8 |0 0:i0i{ 0
_________ 1 { 1 |2 41 4]0 1:0: 0
2 1 i 38 211 0:i0i 0
s 1 2 4 210 1:i0i 0
4| 0 |6 5 9 {0 0i0: 0
5 | o |7 7 8|0 0:0: 0
6 | 1 | 4 2 10 o0 0
_________ 7| ot [1 1 111 0i0i 0
8| o |7 &8 9 |0 0:0: 0
9 | o |8 9 6|0 o0oi0: 0
_______ 0 1 |2 2 8]0 1:0: 0
_______ 1| o fOo 0 00 0i0: 0
_______ 12| 1 |8 8 110 0:1i 0
_______ 13| o |5 8 5[0 0i0i{ 1
_______ 14| o |9 7 7 |0 0i0; 0
15 1 2 3 1 |o 1i0i o

Aﬂl NI

If row r Is supported, then 1, else O

(supports(x,1)

(supports(y,1)
(supports(z,1)

validTuples =
supports(x,2) | supports(x,3) | supports(x,4) | supports(x,5)) &
supports(y,2) | supports(y,3) | supports(y,4) | supports(y,5)) &
supports(z,2) | supports(z,3) | supports(z,4) | supports(z,5))

Compact Table: domain-consistency filtering

Goal: remove values not supported anymore

validTuples & supports(xi,v) = 0

Compqcthb'I_eF'i_ 1teri nQCX : tabl e) { (where @ is the all-zero bit set) is implemented
for (X' < X) { In the Java class BitSet using method intersects
i<

for (v <- D(xi)) {
1t (validTuples & supports(xi,v) = 0) {
D(xi) <- D(xi) \ {v?}
¥

38

’Mini

Compact Table: filtering example

. : supports
iIndex validTuples

X
O <
N

~
oo
o ||

..

...

N

L
o
o

39

validTuples & supports(x,5

validTuples & supports(y,5
validTuples & supports(z,5

Update of validTuples when a domain change occurs i

» Assume 1 and 2 are now removed from D(x) = {#2,3,4}.

> We first need to update validTuples. There are two possible strategies:

1. From scratch, based on the remaining values of all variable domains:
D(x) ={3,4} and D(y) = D(z) ={1,2,3,4}. Same as the initial computation:

validTuples = (supports(x,3) | supports(x,4)) & (supports(y,1) | supports(y,2) |
supports(y,3) | supports(y,4)) & (supports(z,1) | supports(z,2) | supports(z,3) |
supports(z,4))

2. Incrementally, based on the modified variable domain: D(x) = {3,4}.

validTuples = validTuples & (supports(x,3) | supports(x,4))

Indeed, dropping the influence of bit set a on the bit set (al b) & ¢,

., Soastogetb&c, can also be done by computing ((al b) & ¢) & b.

Underlying data structure:
the StateSparseBitSet API

Compact Table and state restoration fin

42

Index validTuples
______________ L .
______________ LI I
______________ 2 \o.....9
LS 0 ...
______________ 4 .0
______________ A . S
______________ 6 .1
L A S 0 ..
______________ 8 {0
______________ S V... 0
____________ LV . S
L S 0 ...
____________ 12 o1
____________ s .9
____________ 14 1.9

15 0

In practice, assume

Long of 64 bits ;-)

[clspiom [Llspiom [p]spiom

[e]spiom

> The update requires having a stateful validTuples bit set:
it must recover on backtrack (sm.restoreState, ...).

» We introduce a data structure called StateBitSet
that encapsulates an array of StateLong (of 64 bits each).

> This data structure represents valid Tuples:

validTuples: StateBitSet

words = StatelLong|]

Can we further improve the efficiency?

Yes, as bitwise operations do not need to be computed on words that are zero!
D(x) ={3,4}, D(y) ={1,2,3,4} = D(z)

43

words[2] words[1] words|[O0]

words[3]

Index validTuples | x y z | supports(y,1)
______________ o | o |7 58 0
_________________________ 0 |2 14 1
_________________________ 0 |1 382 0o
..... 0____ |2 42| .0 .
_________________________ 0 |6 59 o
_________________________ 0o |7 78 0o
_________________________ 1 |4 21] o
_____ N T O A
_________________________ 0 |7 89| 0o
_________________________ o |8 96| 0o
_________________________ 0 |2 23 o
..... 0____Jo. ool .0 ___.
_________________________ i (331 o
_________________________ 0 |5 85 0o
_________________________ o |9 77| 0o
0 2 3 1 0

CompactTableFiltering(x,table) {

for (xi <- x) {
for (v <- D(xi)) {
1f (validTuples & supports(xi,v) = 0) {

¥

D(xi) <- D(xi) \ {vi}

’P‘*ﬂl Tal

How can we do that efficiently?

> Use an internal sparse set for the state
» (Goal: maintain the set of indices of non-zero words

nonZeroldx: nonZeroSize: 4

currently in the set not currently in the set

> |f a word becomes zero, then it is swapped with the last non-zero word

nonZeroldx: nonZeroSize: 3

> Restoration requires only the size variable to be restored

nonZeroldx: nonZeroSize: 4

44

’Mini

Can we even further improve the efficiency?

> Yes, as the last intersecting word is more likely to intersect again

>» Remember the index, called residue, of the last word that led to a non-empty
intersection and try it first for the next intersection test with some supports(x;,Vv)

boolean 1intersects(validTuples,supports[x,v]) {

residue = support[x,v].residue

if (validTuples.words[residue] & supports[x,v].words[residue] '= 0L)
return true

1 = nonZeroSize

residue = int value (cache) that remembers the last

while Ci > Q){ word proving non-empty intersection:
1 =1 - 1 O(1) check instead of O(|lwords])

wordIldx = nonZeroldx|[1]
1f (validTuples.words[wordIdx] & supports[x,v].words[wordIdx] != QL){
supports[x,v].residue = wordIdx
return true

} new last-known intersecting
} word, hence new residue

return false

45 }

’Mini

How can we do that efficiently?

All this can be implemented in a data structure called StateSparseBitSet,
with the following API:

mask.clear() // empty the bit set

mask.or(supports[x,a]) // mask = mask | supports[x,a]
validTuples.and(mask) // words = words & mask
validTuples.intersects(supports[x,c]) // words & supports[x,c] != 0L

46

’Mini

Update validTuples with StateSparseBitSet API

validTuples = validTuples & (supports(x,3) | supports(x,4))

. mask.clear()
. mask.or(supports[x,3])
. mask.or(supports[x,4])

A W N R

. validTuples.and(mask)

47

’P‘*ﬂl Tal

Filtering validTuples with StateSparseBitSet API

Is x=3 still possible?

1. answer = validTuples.intersects(supports[x,3])

2. 1f (lanswer) { x.remove(3)}

48

’P‘*ﬂl Tal

StateSparseBitSet £

» Set: collection of objects

> BitSet: uses bits (one dedicated bit per object) to represent the presence
(bit set to 1) or absence (bit set to 0) of an object in the set

» Sparse: optimized to avoid computations on empty parts of the data structure

» State: allow automatic restoration to a previous saved state

49

