
Constraint
Programming

Search

Module Overview

2

‣Motivation
‣Heuristics

– Value Selection Heuristics
– Variable Selection Heuristics

• First Fail
• Degree
• Impact
• Activity
• Most Recent Conflicts

‣Strategies (a.k.a. Metaheuristics)
– Discrepancy Search
– LNS and Restarts

Motivation

Black-Box Search: The Vision

4

‣Constraint Program = Model + Search

‣Since ~2004, many research efforts have been devoted to making this vision
true.

The vision is that we should
not have to worry too much about the search.
A CP solver should be smart enough to learn

or select a good search for the model.

Refresher: Branching = 2-Step Choice

5

• Variable selection.
• Value selection & domain partition selection.

 
 
 
 
 
 
The branching decisions can have a strong impact on the size of the search
tree.

x

x > v x ≤ v
x

x = v x ≠ v

Branching does not need to be binary:

x
x=v1

x=v2
x=v9

D(x) = {v1,v2,…,v9)

…

Searching…

6

‣What is the big deal?
‣ It is all about the tree!

– Size or shape
– Depth of solutions
– Location of solutions

Small Tree Large Tree

Searching…

7

‣What is the big deal?
‣ It is all about the tree!

– Size or shape
– Depth of solutions
– Location of solutions

Deep Shallow

Searching…

8

‣What is the big deal?
‣ It is all about the tree!

– Size or shape
– Depth of solutions
– Location of solutions

Easy to reach… Hard to reach…

Bottomline

9

‣Variable selection has an impact
– on the size of the tree (because of propagation)
– on the quality of solutions to a COP when timing out
– on the depth where (good-quality) solutions are

‣Value selection has an impact
– on the size of the tree
– on the quality of solutions to a COP when timing out
– on the location of solutions (heuristic recommendations are “far left”)

‣Strategies have an impact
– on how quickly you hit a solution that is good or otherwise hard to reach

Value Selection
Here: for optimization problems

Value Selection for Optimization Problems

11

‣The leftmost feasible solution is very important for pruning during branch-
and-bound search.
‣Solution quality is mostly impacted by the value selection heuristic for

optimization problems.

Leftmost feasible
solution

The decisions
down the

leftmost branch
should look like a
greedy algorithm.

Example: Traveling Salesperson Problem

12

Greedily, we would adopt a nearest-neighbor value selection heuristic:

Example: Traveling Salesperson Problem

13

Example: Traveling Salesperson Problem

14

Example: Traveling Salesperson Problem

15

Example: Traveling Salesperson Problem

16

Can we automate this for any problem in order to find a good first feasible
solution?

Making the First Solution Good!

17

Branching = 2 steps (in general: not necessarily in this order):
1. Variable selection.
2. Value selection & partition selection: the bound-impact value selector (BIVS)

selects a value with the smallest objective lower bound after propagation of
the fixing of the selected variable to this value (when minimizing).

Jean-Guillaume Fages and Charles Prud'homme.
Making the first solution good!

International Conference on Tools with Artificial Intelligence (ICTAI), 2017.

Making the First Solution Good!

18

‣Minimize O = f(x1,x2,…,x10) 
subject to some constraints.
‣The variable selection heuristic selects x3.

‣ Its current domain is D(x3) = {v1,v2,v3,v4}.

x3 = ?v? x3 ≠ v

best = null
bestObj = +inf
for v in {v1,v2,v3,v4}
 sm.saveState()
 cp.post(x3 = v)
 if min(O) < bestObj:
 best = v
 bestObj = min(O)
 sm.restoreState()
branch {cp.post(x3 = best)}
 {cp.post(x3 != best)}

Making the First Solution Good: Advice

19

‣This procedure (for making the first solution good) is quite costly: 
fixpoint computation for every value + saving & restoring the state.
‣The advice is to do this only for discovering the first feasible solution and

then to use a more naïve (but faster) value selection heuristic.

Value Selection: Phase Saving

20

‣ If a value v was successfully used for fixing a selected variable x
– that is: if branching on x=v did not lead to failure of the fixpoint algorithm —
then store the value v as the last success value of x.
‣Each time the variable x is selected by the variable selection heuristic, 

first try its last success value.
public static Supplier<Procedure[]> firstFail(IntVar... x) {
 return () -> {
 IntVar xs = selectMin(x,
 xi -> xi.size() > 1,
 xi -> xi.size());
 if (xs == null)
 return EMPTY;
 else {
 int v = xs.min();
 return branch(() -> xs.getSolver().post(equal(xs, v)),
 () -> xs.getSolver().post(notEqual(xs, v)));
 }
 };
}

One can easily implement
a default search

doing phase saving.

public static <T, N extends Comparable<N>> T selectMin(T[] x,
 Predicate<T> p, Function<T, N> f) {
 T sel = null;
 for (T xi : x) {
 if (p.test(xi)) {
 sel = sel == null ||
 f.apply(xi).compareTo(f.apply(sel)) < 0 ? xi : sel;
 }
 }
 return sel;
}

Variable Selection
- Introduction to the first-fail (FF) principle
- A first instantiation of FF based on domain size

Branching

22

Reminder:
• Variable selection.
• Value selection & domain partition selection.
For the rest of this lecture, we focus on variable selection.

First-Fail Principle

23

“To succeed, try first where you are most likely to fail.”

Robert M. Haralick and Gordon L. Elliott.
Increasing tree search efficiency for constraint satisfaction problems.
International Joint Conference on Artificial Intelligence (IJCAI), 1979.

First-fail for variable selection:
Since all variables must eventually be fixed, 
if there are no solutions under a node (failure), then we prefer to detect this as soon as possible, 
so that not too much time is spent exploring the subtree under that node.

First-Fail Principle for Variable Selection

24

‣Can be implemented in various ways:
– Min-Dom
– Dom+Deg
– Dom/Deg
– Dom/Wdeg
– Impact-based search
– Activity-based search
– Last-conflict search
– Conflict-ordering search
– …

Min-Dom Heuristic

25

‣Min-Dom: Select an unfixed variable with the smallest domain size.
‣This heuristic was shown experimentally to minimize search-tree depth.
‣ It is quite intuitive that for D(x1) = {1,2} and D(x2) = {1,…,100} 

branching on x1 first is likely to trigger more propagation.

Min-Dom Heuristic

26

int n = 8;
 Solver cp = Factory.makeSolver(false);
 IntVar[] q = Factory.makeIntVarArray(cp, n, n);

 // constraints …

 DFSearch search = Factory.makeDfs(cp, () -> {
 IntVar qs = selectMin(q,
 qi -> qi.size() > 1,
 qi -> qi.size());
 if (qs == null) return EMPTY;
 else {
 int v = qs.min();
 return branch(() -> Factory.equal(qs, v),
 () -> Factory.notEqual(qs, v));
 }
 });

 search.onSolution(() -> println("solution:" + Arrays.toString(q)));
 SearchStatistics stats = search.solve();

Select an unfixed variable with the
smallest domain size.

Variable Selection
FF based on the degrees in the constraint graph

Degree-Based Heuristics

28

If a variable is involved in many constraints, 
then it is likely that any filtering of the domain of this variable  
will trigger some filtering for other variables of those constraints.

Dom+Deg and Dom/Deg

29

‣Degree of a variable x = the number of constraints on x.
‣Dom+Deg: Min-Dom, and break ties with the degree.
‣Dom/Deg: Select an unfixed variable with the smallest ratio between domain

size and degree.

x2
x5

x4x3

x1

≠

≠ ≠
≠

≠

degree = 3

Weighted Degree (Wdeg) Heuristic

30

‣ Idea: Introduce learning to find out what the “difficult” variables are.
‣Each time a constraint fails, its weight is increased (by +1).

– The idea is that if a constraint has failed a lot in the past, 
then it will probably continue this trend in the future.

‣Weighted degree of a variable x = the sum of the weights of the constraints
on x and at least one other unfixed variable.
‣Dom/Wdeg: Select an unfixed variable with the smallest ratio between

domain size and weighted degree.
‣Weakness: A constraint that fails may not be the only guilty one for the failure

(cascade of propagations in the fixpoint algorithm).

Dom/Wdeg Implementation

31

‣Not shipped with MiniCP, but quite easy to implement.
‣Each constraint should be aware of the variables in its scope.
‣Add a method called scope to the class Constraint: 

it returns the list of variables in the scope of the constraint.

Variable Selection
FF based on estimated filtering impact

Impact-Based Search (IBS)

33

‣ Idea: Take a branching decision that has the lowest estimated impact in
terms of filtering.
‣Preliminaries:

Philippe Refalo.
Impact-based search strategies for constraint programming.

International Conference on Principles and Practice of Constraint Programming (CP), 2004.

estimate of the size
of the search tree

CSPP = ⟨X, D, C⟩

S(P) = ∏
x∈X

|D(x) |

Impact-Based Search (IBS)

34

1

k–1

k

Contraction of search space with
respect to parent node:

= 0 (no contraction)
= 1 (failure, full contraction)

P1 = ⟨X, D1, C ∪ {c1}⟩

Ck−1 = C ∪ {c1, …, ck−1}

c1

Pk−1 = ⟨X, Dk−1, Ck−1⟩

0 P0 = ⟨X, D, C⟩

ck : x = a

Pk = ⟨X, Dk, Ck⟩ Ik(x = a) = 1 −
S(Pk)

S(Pk−1)

Impact-Based Search (IBS)

35

‣We can estimate over a set K of search nodes the average impact 
of x=a:

‣This estimate can also be updated at every node, with a forget factor, 
instead of being averaged:

Exponential moving average 𝛼 ∈ [0,1]:
the higher 𝛼 is, the faster it will
discount older observations.

I(x = a) =
1

|𝒦 |
⋅ ∑

k∈𝒦

Ik(x = a)

Ik(x = a) = (1 − α) ⋅ Ik−1(x = a) + α ⋅ Ik(x = a)

Impact-Based Search (IBS)

36

‣ Estimation of the size of the search tree when trying x=a:

‣ Estimation of the size of the search tree when labeling the variable x:

‣ Impact of a variable:
P

constant whatever the variable we branch on

Variable heuristic:
Select x with minimum
Value heuristic:
Select a with minimum

= 0 (no contraction)
= 1 (failure, full contraction)

…

x=a ∀a∈D(x)

S(P) ⋅ (1 − I(x = a))

∑
a∈D(x)

S(P) ⋅ (1 − I(x = a))

I(x) = ∑
a∈D(x)

(1 − I(x = a))

I(x)
I(x = a)

Variable Selection
FF based on estimated filtering activity

Activity-Based Search (ABS)

38

‣ Idea: Track how often a variable domain is contracted during search, 
as this allows some learning.
‣We expect that a variable whose domain is often contracted is a good

candidate to branch on early, in order to reduce the depth of the search tree.

Activity-Based Search (ABS)

39

Each time a search choice is executed, increment the counter A(x), denoting
the activity of x, of every variable x having a domain contraction:

X’ = variables with contracted domain
decay factor in [0..1]

Variable Heuristic:
Select x maximizing

Laurent Michel and Pascal Van Hentenryck.
Activity-based search for black-box constraint

programming solvers. CPAIOR, 2012.
P = ⟨X, D, C⟩

x = a

X′￼ ⊆ X

∀x ∈ X where |D(x) | > 1 : A(x) := A(x) ⋅ γ
∀x ∈ X′￼ : A(x) := A(x) + 1

A(x)
|D(x) |

Initialization of Learning Heuristics

40

Activity-based search and impact-based search are initialized with some
random dives before starting a complete search:

Variable Selection
FF based on most recent conflicts

Last-Conflict Search

42

‣ Can be used in combination with another heuristic; let us call it fallBackHeuristic.

‣ Let lastConflictVariable store a reference, initialized to null, to a decision variable: 
this variable is the last one we branched on that led to failure of the fixpoint algorithm.

nextVarToBranchOn(X) {
if (lastConflictVariable == null) {

 return fallBackHeuristic(X)
 } else {
 return lastConflictVariable
 }
}

Christophe Lecoutre, Lakhdar Saïs, Sébastien Tabary, and Vincent Vidal.
Reasoning from last conflict(s) in constraint programming.

Artificial Intelligence, 2009.

This variable caused the most recent conflict, so we
may legitimately believe that branching on it may cause

a conflict again (since not that much has changed).

Last-Conflict Search

43

When branching on a variable leads to a failure, 
always branch on this variable first, until it is successfully fixed.

x1

x2

x3

x4 Impossible to fix x4 to some value. Why?
It may be in conflict with the choices on x3, x2, or x1.

Since we do not know, we should always try to branch on x4 first,
also after backtracking, as long as this conflict persists.

Last-Conflict Search: Example

44

x = a

Backtrack and select x
during variable selection

3

2

1

y = c

4

x ≠ a

5

x = b
6

x ≠ b

7

y ≠ c

x = a
8

lastConflictVariable = null

lastConflictVariable = x

lastConflictVariable = null:
the next decision need not be on x.

We branch on x rather than on y
or another variable.

Conflict-Ordering Search (COS)

45

‣Generalization and extension of last-conflict search:
– Each branching decision is timestamped with a shared counter, 

which is incremented at each failed visited node of the search tree.
– Each variable has a timestamp: it is the timestamp of the most recent node where a

failure occurred when branching on this variable, 
and null if it caused no failure so far.

– COS: Select the unfixed variable with the largest timestamp. 
If no unfixed variable has a failure timestamp yet, 
then use a fallback heuristic.

Steven Gay, Renaud Hartert, Christophe Lecoutre, and Pierre Schaus.
Conflict ordering search for scheduling problems.

International Conference on Principles and Practice of Constraint Programming, 2015.

Conflict-Ordering Search (COS)

46

‣A timestamp is associated with each variable  
and is increased (to the node timestamp) at each failure it causes.
‣COS: Select the unfixed variable with the largest timestamp.

x=a

y=b

x≠a

?y≠b

z=c z≠c
1

2 3

Variable x y z

Time-
stamp null 1 3Assume y≠b 

leads to fixing y.

Conflict-Ordering Search (COS)

47

Algorithm 1: COS (P = (X , C): CSP)
Output: true i↵ P is satisfiable

1 P �(P)
2 if P = ? then

3 if lastVar 6= null then
4 nConflicts nConflicts+ 1
5 stamp[lastVar] nConflicts

6 return false

7 if 8x 2 X , |dom(x)| = 1 then

8 return true

9 failed {x 2 X : stamp[x] > 0 ^ |dom(x)| > 1}
10 if failed = ; then
11 lastVar varHeuristic.select()
12 else

13 lastVar argmax x2failed{stamp[x]}
14 v valHeuristic[lastVar].select()
15 return COS (P|lastVarv) _ COS (P|lastVar>v)

<latexit sha1_base64="MflfVYzOd3/c/Ft9FV9a0hgfsBI=">AAAIx3icjVRfb9s2EFfbbPO0f233uBduUQAHCwIrLxsCpCiaDGiwDfGWJQ0QGgFFUTYRilJJynXA8GHPe92+x77Ovsywo2TL/2J0AixTd7+7+93x7pJScG16vX8ePX6y9cGHH3U+Dj/59LPPv3j67PmlLipF2QUtRKGuEqKZ4JJdGG4EuyoVI3ki2Jvk9tjr34yZ0ryQv5m7kg1yMpQ845QYEN08e/JviBM25NISMSwUN6PcYUESJmrBIS20C8MdhPBJIU1fcWnOWc59YBmC9Md3Z5WxETaqYhHiWYaiPvxrpCGAzjgBIg6AO+g0QxmfsBSVBThBGeECPgqFdCEqT8ZbAXU6Yqn3/EoQefsTpAUfUR/hITMa4XLEu/3dCGHsMaeZ9bojhJPCRMhZEDbiCJLQ5oRR7lO/JKpmgrBkb5GshIimWPCNMyuPC5kJTo12s0DLwm8RiqM65sxEG5KX7vrBMIMHnUS1tWso/spMpaT3RIRmXuXCGfOsUEQINEGYS4RzYkaUCHvl9tB9WuTdye79UQz85z7q4sM1+TJDYCTZxKB0SgqZAhlyW5cRCDV1b9O062HQIZrnNxmgF6iHIE2ZtuFBFCPsmoLgqiHdeobbYHlp7jQzkUNNmTddR0NiPP1+zSoFLc/pPjQ0o6a72xbmB6jS//JF1BB/DdlMbizeg+Sa7Fp2DjJezA67WYimdGMiqrpU45lDXxhuLK41LcMNF+/mzJvitHd0fHbe7d/Ye7SBvYDGHLtdOMBIvA/9wkOjEFNS+smxU/dH3cVuac/HgD1Ex+f9XRdiJtOFUQ9vnm739nv1g9YP8fSwHUyfPmyMv3Fa0Cpn0lAgp6/jXmkGliioip91XGlWEnpLhuwajpLkTA9svakc2gFJiqDB4QdLoJYuWliSa32XJ4D07PWqzgsf0l1XJvt+YLksK8MkbQJllaibH9YeSrmCaxF3cCAUcucU0RFRhBpYjuGSK1VBo+yN/UZN9/xbyypPmGLpYF65A8gUzOBmBFHsZ+BzVjJFTKFsPY7O1u8NiHronW3+NmBg1pz1rxCW1jta5DmMoMXDxF3HAwtRDNqOnfN9K4qECCim1EYRv1zroi/bSblm51FIFionYhk7qqHYwBoxxtboZUDWAPw1TAHLejpdes7OxqeVrCANB6b1MLbQuWgTVj8A1qtomIg5zH+s6FNWQi+1iOZzBbM4fCfL+Eb1HpvZwLq2Vl4L0lWjtQ04DwSquXTNbHEnLdqIBRuY8Xh1otcPlwf7cW8//uVg++Wr6bR3gq+Cb4JuEAffBS+D10E/uAjoFtv6Y+vPrb86p52iM+5MGujjR1ObL4Olp/P7f/QuDDY=</latexit><latexit sha1_base64="MflfVYzOd3/c/Ft9FV9a0hgfsBI=">AAAIx3icjVRfb9s2EFfbbPO0f233uBduUQAHCwIrLxsCpCiaDGiwDfGWJQ0QGgFFUTYRilJJynXA8GHPe92+x77Ovsywo2TL/2J0AixTd7+7+93x7pJScG16vX8ePX6y9cGHH3U+Dj/59LPPv3j67PmlLipF2QUtRKGuEqKZ4JJdGG4EuyoVI3ki2Jvk9tjr34yZ0ryQv5m7kg1yMpQ845QYEN08e/JviBM25NISMSwUN6PcYUESJmrBIS20C8MdhPBJIU1fcWnOWc59YBmC9Md3Z5WxETaqYhHiWYaiPvxrpCGAzjgBIg6AO+g0QxmfsBSVBThBGeECPgqFdCEqT8ZbAXU6Yqn3/EoQefsTpAUfUR/hITMa4XLEu/3dCGHsMaeZ9bojhJPCRMhZEDbiCJLQ5oRR7lO/JKpmgrBkb5GshIimWPCNMyuPC5kJTo12s0DLwm8RiqM65sxEG5KX7vrBMIMHnUS1tWso/spMpaT3RIRmXuXCGfOsUEQINEGYS4RzYkaUCHvl9tB9WuTdye79UQz85z7q4sM1+TJDYCTZxKB0SgqZAhlyW5cRCDV1b9O062HQIZrnNxmgF6iHIE2ZtuFBFCPsmoLgqiHdeobbYHlp7jQzkUNNmTddR0NiPP1+zSoFLc/pPjQ0o6a72xbmB6jS//JF1BB/DdlMbizeg+Sa7Fp2DjJezA67WYimdGMiqrpU45lDXxhuLK41LcMNF+/mzJvitHd0fHbe7d/Ye7SBvYDGHLtdOMBIvA/9wkOjEFNS+smxU/dH3cVuac/HgD1Ex+f9XRdiJtOFUQ9vnm739nv1g9YP8fSwHUyfPmyMv3Fa0Cpn0lAgp6/jXmkGliioip91XGlWEnpLhuwajpLkTA9svakc2gFJiqDB4QdLoJYuWliSa32XJ4D07PWqzgsf0l1XJvt+YLksK8MkbQJllaibH9YeSrmCaxF3cCAUcucU0RFRhBpYjuGSK1VBo+yN/UZN9/xbyypPmGLpYF65A8gUzOBmBFHsZ+BzVjJFTKFsPY7O1u8NiHronW3+NmBg1pz1rxCW1jta5DmMoMXDxF3HAwtRDNqOnfN9K4qECCim1EYRv1zroi/bSblm51FIFionYhk7qqHYwBoxxtboZUDWAPw1TAHLejpdes7OxqeVrCANB6b1MLbQuWgTVj8A1qtomIg5zH+s6FNWQi+1iOZzBbM4fCfL+Eb1HpvZwLq2Vl4L0lWjtQ04DwSquXTNbHEnLdqIBRuY8Xh1otcPlwf7cW8//uVg++Wr6bR3gq+Cb4JuEAffBS+D10E/uAjoFtv6Y+vPrb86p52iM+5MGujjR1ObL4Olp/P7f/QuDDY=</latexit><latexit sha1_base64="MflfVYzOd3/c/Ft9FV9a0hgfsBI=">AAAIx3icjVRfb9s2EFfbbPO0f233uBduUQAHCwIrLxsCpCiaDGiwDfGWJQ0QGgFFUTYRilJJynXA8GHPe92+x77Ovsywo2TL/2J0AixTd7+7+93x7pJScG16vX8ePX6y9cGHH3U+Dj/59LPPv3j67PmlLipF2QUtRKGuEqKZ4JJdGG4EuyoVI3ki2Jvk9tjr34yZ0ryQv5m7kg1yMpQ845QYEN08e/JviBM25NISMSwUN6PcYUESJmrBIS20C8MdhPBJIU1fcWnOWc59YBmC9Md3Z5WxETaqYhHiWYaiPvxrpCGAzjgBIg6AO+g0QxmfsBSVBThBGeECPgqFdCEqT8ZbAXU6Yqn3/EoQefsTpAUfUR/hITMa4XLEu/3dCGHsMaeZ9bojhJPCRMhZEDbiCJLQ5oRR7lO/JKpmgrBkb5GshIimWPCNMyuPC5kJTo12s0DLwm8RiqM65sxEG5KX7vrBMIMHnUS1tWso/spMpaT3RIRmXuXCGfOsUEQINEGYS4RzYkaUCHvl9tB9WuTdye79UQz85z7q4sM1+TJDYCTZxKB0SgqZAhlyW5cRCDV1b9O062HQIZrnNxmgF6iHIE2ZtuFBFCPsmoLgqiHdeobbYHlp7jQzkUNNmTddR0NiPP1+zSoFLc/pPjQ0o6a72xbmB6jS//JF1BB/DdlMbizeg+Sa7Fp2DjJezA67WYimdGMiqrpU45lDXxhuLK41LcMNF+/mzJvitHd0fHbe7d/Ye7SBvYDGHLtdOMBIvA/9wkOjEFNS+smxU/dH3cVuac/HgD1Ex+f9XRdiJtOFUQ9vnm739nv1g9YP8fSwHUyfPmyMv3Fa0Cpn0lAgp6/jXmkGliioip91XGlWEnpLhuwajpLkTA9svakc2gFJiqDB4QdLoJYuWliSa32XJ4D07PWqzgsf0l1XJvt+YLksK8MkbQJllaibH9YeSrmCaxF3cCAUcucU0RFRhBpYjuGSK1VBo+yN/UZN9/xbyypPmGLpYF65A8gUzOBmBFHsZ+BzVjJFTKFsPY7O1u8NiHronW3+NmBg1pz1rxCW1jta5DmMoMXDxF3HAwtRDNqOnfN9K4qECCim1EYRv1zroi/bSblm51FIFionYhk7qqHYwBoxxtboZUDWAPw1TAHLejpdes7OxqeVrCANB6b1MLbQuWgTVj8A1qtomIg5zH+s6FNWQi+1iOZzBbM4fCfL+Eb1HpvZwLq2Vl4L0lWjtQ04DwSquXTNbHEnLdqIBRuY8Xh1otcPlwf7cW8//uVg++Wr6bR3gq+Cb4JuEAffBS+D10E/uAjoFtv6Y+vPrb86p52iM+5MGujjR1ObL4Olp/P7f/QuDDY=</latexit><latexit sha1_base64="MflfVYzOd3/c/Ft9FV9a0hgfsBI=">AAAIx3icjVRfb9s2EFfbbPO0f233uBduUQAHCwIrLxsCpCiaDGiwDfGWJQ0QGgFFUTYRilJJynXA8GHPe92+x77Ovsywo2TL/2J0AixTd7+7+93x7pJScG16vX8ePX6y9cGHH3U+Dj/59LPPv3j67PmlLipF2QUtRKGuEqKZ4JJdGG4EuyoVI3ki2Jvk9tjr34yZ0ryQv5m7kg1yMpQ845QYEN08e/JviBM25NISMSwUN6PcYUESJmrBIS20C8MdhPBJIU1fcWnOWc59YBmC9Md3Z5WxETaqYhHiWYaiPvxrpCGAzjgBIg6AO+g0QxmfsBSVBThBGeECPgqFdCEqT8ZbAXU6Yqn3/EoQefsTpAUfUR/hITMa4XLEu/3dCGHsMaeZ9bojhJPCRMhZEDbiCJLQ5oRR7lO/JKpmgrBkb5GshIimWPCNMyuPC5kJTo12s0DLwm8RiqM65sxEG5KX7vrBMIMHnUS1tWso/spMpaT3RIRmXuXCGfOsUEQINEGYS4RzYkaUCHvl9tB9WuTdye79UQz85z7q4sM1+TJDYCTZxKB0SgqZAhlyW5cRCDV1b9O062HQIZrnNxmgF6iHIE2ZtuFBFCPsmoLgqiHdeobbYHlp7jQzkUNNmTddR0NiPP1+zSoFLc/pPjQ0o6a72xbmB6jS//JF1BB/DdlMbizeg+Sa7Fp2DjJezA67WYimdGMiqrpU45lDXxhuLK41LcMNF+/mzJvitHd0fHbe7d/Ye7SBvYDGHLtdOMBIvA/9wkOjEFNS+smxU/dH3cVuac/HgD1Ex+f9XRdiJtOFUQ9vnm739nv1g9YP8fSwHUyfPmyMv3Fa0Cpn0lAgp6/jXmkGliioip91XGlWEnpLhuwajpLkTA9svakc2gFJiqDB4QdLoJYuWliSa32XJ4D07PWqzgsf0l1XJvt+YLksK8MkbQJllaibH9YeSrmCaxF3cCAUcucU0RFRhBpYjuGSK1VBo+yN/UZN9/xbyypPmGLpYF65A8gUzOBmBFHsZ+BzVjJFTKFsPY7O1u8NiHronW3+NmBg1pz1rxCW1jta5DmMoMXDxF3HAwtRDNqOnfN9K4qECCim1EYRv1zroi/bSblm51FIFionYhk7qqHYwBoxxtboZUDWAPw1TAHLejpdes7OxqeVrCANB6b1MLbQuWgTVj8A1qtomIg5zH+s6FNWQi+1iOZzBbM4fCfL+Eb1HpvZwLq2Vl4L0lWjtQ04DwSquXTNbHEnLdqIBRuY8Xh1otcPlwf7cW8//uVg++Wr6bR3gq+Cb4JuEAffBS+D10E/uAjoFtv6Y+vPrb86p52iM+5MGujjR1ObL4Olp/P7f/QuDDY=</latexit>

Failure: update the timestamp.

Failure: select the variable
with the largest timestamp.

Example

48

Consider the CSP below, whose infeasibility is not detected by the fixpoint algorithm because
of the AllDifferent decomposition. Assume we branch in the order x1, …, x8.

x1∈{0,1} x5∈{0,1,2} x6∈{0,1,2}

x7∈{0,1,2} x8∈{0,1,2}x3∈{0,1}

x2∈{0,1}

x4∈{0,1}

≠

≠

≠≠ ≠ ≠

Example: Search Tree

49

x1

x2

x3

x4

x5
x6

(x7)
(x8)

The problem is that there is a subset of variables, {x5,x6,x7,x8}, causing the conflict.
Ideally we should detect this earlier in the search tree.

Example: Search Trees with Two Static Orders

50

x1

x2

x3

x4

x5,x6(,x7,x8)

x5

x6

Search tree obtained with the
static order [x1,x2,x3,x4,x5,x6,x7,x8].

Search tree obtained with the
static order [x5,x6,x7,x8,x1,x2,x3,x4]:
ideally, a heuristic learns this order.

Example: Search Tree with COS

51

x1

x2

x3

x4

x5
x6

(x7)
(x8)

x6
x5

(x7)
(x8)

x5
x6

(x7)
(x8)

x6
x5

(x7)
(x8)

x5
x6

(x7)
(x8)

Discrepancy Search
- Very useful if you trust your value heuristic
- Search combinator ⟂ to the other techniques

Question: Assume I have a good heuristic

53

1 2 3 4 5 6 7 8

But is this one
supposed to be

better than…
…this one?

Then this solution
should be really good.

 Classify solutions according to
the mistakes of the heuristic!

Discrepancy-Based Search

54

‣Discrepancy = the number of right decisions.

1 2 3 4 5 6 7 8

0 1 1 ? 1 2 2 3
Given that:
• I trust my heuristic
• Wrong decisions generally occur at early stages

We should visit solutions by increasing discrepancy.

Combinator: Iterative Discrepancy

55

Objective obj = cp.minimize(totCost);

for (int dL = 0; dL < x.length; dL++) {
 DFSearch dfs = makeDfs(cp, limitedDiscrepancy(firstFail(x),dL));
 dfs.optimize(obj);
}

limitedDiscrepancy wraps the search:
 it is called a search combinator.

Implementation = Exercise

56

public class LimitedDiscrepancyBranching implements Supplier<Procedure[]> {

 private int curD;
 private final int maxD;
 private final Supplier<Procedure[]> bs;

 public LimitedDiscrepancyBranching(Supplier<Procedure[]> branching,
 int maxDiscrepancy) {
 if (maxDiscrepancy < 0)
 throw new IllegalArgumentException("max discrepancy should be >= 0");
 this.bs = branching;
 this.maxD = maxDiscrepancy;
 }

 @Override
 public Procedure[] get() {
 // TODO
 throw new NotImplementedException();
 }
}

• Eliminate alternatives that would exceed maxD
• Wrap each alternative (closure) such that the
call method of the wrapped alternatives:
• Augments curD depending on its position
• +0 for alts[0], ..., +i for alts[i]

TBD with Laurent
-LNS, Restarts and Heavy Tails for feasibility

Search Wrap up

Search: Summary

59

‣ Value selection heuristic:

• Bound-Impact Value Selector (BIVS)

• Phase saving

‣ Variable selection using the first-fail heuristic:

• Degree and Weighted Degree

• Impact-Based Search (IBS):

• Choose the variable and value that have a strong impact in terms of filtering.

• The impacts are estimated and learned during the search.

• Activity-Based Search (ABS):

• Choose the variable whose domain is often filtered: activity.

• The activity is learned during the search.

• Last-Conflict Search (LC):

• Choose the variable that led to the latest conflict, if any.

• Conflict-Ordering Search (COS):

• Choose the variable with the largest timestamp.

• Discrepancy-Based Search Combinator

