Constraint
Programming

i

Module Overview

> Motivation
» Heuristics
— Value Selection Heuristics
— Variable Selection Heuristics
* First Fall
* Degree
* Impact
* Activity
* Most Recent Conflicts
> Strategies (a.k.a. Metaheuristics)
— Discrepancy Search
— LNS and Restarts

2

’Mini

Motivation

_BIack-Box Search: The Vision -

> Constraint Program = Model + Search

The vision is that we should
not have to worry too much about the search.

A CP solver should be smart enough to learn
or select a good search for the model.

> Since ~2004, many research efforts have been devoted to making this vision
true.

Refresher: Branching = 2-Step Choice

e Variable selection.
 Value selection & domain partition selection.

Branching does not need to be binary:

The branching decisions can have a strong impact on the size of the search
tree.

5

Searching...

> What is the big deal?

> It Is all about the tree!
— Size or shape
— Depth of solutions
— Location of solutions

Small Tree

A

Large Tree

’Mini

Searching...

> What is the big deal?

> It Is all about the tree!
— Size or shape
— Depth of solutions
— Location of solutions

Deep

Shallow

’Mini

Searching...

> What is the big deal?

> It Is all about the tree!
— Size or shape
— Depth of solutions
— Location of solutions

Easy to reach...

Hard to reach...

’Mini

Bottomline -

> Variable selection has an impact
—on the size of the tree (because of propagation)
—on the quality of solutions to a COP when timing out
—on the depth where (good-quality) solutions are

> Value selection has an impact
—on the size of the tree
—on the quality of solutions to a COP when timing out
—on the location of solutions (heuristic recommendations are “far left”)

» Strategies have an impact
—on how quickly you hit a solution that is good or otherwise hard to reach

Value Selection

Value Selection for Optimization Problems £

> The leftmost feasible solution is very important for pruning during branch-
and-bound search.

> Solution quality is mostly impacted by the value selection heuristic for
optimization problems. A

The decisions
down the
leftmost branch
should look like a
greedy algorithm.

Leftmost feasible
solution
11

Example: Traveling Salesperson Problem

Greedily, we would adopt a nearest-neighbor value selection heuristic:

12

’Mini

Example: Traveling Salesperson Problem

13

’Mini

Example: Traveling Salesperson Problem

14

[

’Mini

Example: Traveling Salesperson Problem £

[

15

Example: Traveling Salesperson Problem

Can we automate this for any problem in order to find a good first feasible
solution?

16

’Mini

Making the First Solution Good! £

Branching = 2 steps (in general: not necessarily in this order):
1. Variable selection.

2. Value selection & partition selection: the bound-impact value selector (BIVS)
selects a value with the smallest objective lower bound after propagation of
the fixing of the selected variable to this value (when minimizing).

17

Making the First Solution Good!

> Minimize O = f(X1,X2,...,X1o)
subject to some constraints.

’Mini

best = null
bestObj = +inf

> The variable selection heuristic selects Xs. for v in {V1,V2,V3,V4}

> Its current domain is D(x3) ={Vv1,V2,V3,Va}. sm.saveState()
Cp.post(X3 = V)
‘ if min(O) < bestObj;
X3 = V7 X3 £V best = v
bestObj = min(O)
‘ . sm.restoreState()

branch {cp.post(xs = best)}
{cp.post(xs = best)}

18

Making the First Solution Good: Advice

> This procedure (for making the first solution good) is quite costly:
fixpoint computation for every value + saving & restoring the state.

> The advice is to do this only for discovering the first feasible solution and
then to use a more naive (but faster) value selection heuristic.

19

Value Selection: Phase Saving

> [f a value v was successfully used for fixing a selected variable x
—that is: if branching on x=v did not lead to failure of the fixpoint algorithm —

then store the value v as the last success value of x.
> Each time the variable x is selected by the variable selection heuristic,

first try its last success value.

public static Supplier<Procedure[]> firstFail(IntVar... x) {
return () -> {
IntVar xs = selectMin(x,

X1 -> xXi.size() > 1,
X1 => xi.size());
if (xs == null)
return EMPTY;
else {
int v = xs.min();

One can easily implement

a default search
doing phase saving.

1&Hﬂ

return branch(() -> xs.getSolver().post(equal(xs, V)),
() —> xs.getSolver().post(notEqual(xs, V)));

20

public static <T, N extends Comparable<N>> T selectMin(T[] x,

Predicate<T> p, Function<T, N> f) {

T sel = null;
for (T xi : x) {
if (p.test(xi)) {
sel = sel == null ||

f.apply(xi).compareTo(f.apply(sel)) < 0 ? xi :

}
}

return sel;

}

sel;

Variable Selection

- Introduction to the first-fail (FF) principle
- A first instantiation of FF based on domain size

Branching

Reminder:

e Variable selection.

 Value selection & domain partition selection.

For the rest of this lecture, we focus on variable selection.

22

First-Fail Principle

23

’Mini

First-fail for variable selection:

Since all variables must eventually be fixed,
iIf there are no solutions under a node (failure), then we prefer to detect this as soon as possible,

so that not too much time is spent exploring the subtree under that node.

“To succeed, try first where you are most likely to fail.”

First-Fail Principle for Variable Selection

» Can be implemented in various ways:
— Min-Dom
—Dom+Deg
—Dom/Deg
—Dom/Wdeg
— Impact-based search
— Activity-based search
— Last-conflict search
— Conflict-ordering search

24

Min-Dom Heuristic

> Min-Dom: Select an unfixed variable with the smallest domain size.
> This heuristic was shown experimentally to minimize search-tree depth.

> [t Is quite intuitive that for D(x1) ={1,2} and D(x2) ={1,...,100}
branching on x1 first is likely to trigger more propagation.

25

_Min-Dom Heuristic

int n = 8;
Solver cp = Factory.makeSolver(false);

IntVar[] q = Factory.makeIntVarArray(cp, n,

// constraints ..

DFSearch search = Factory.makeDfs(cp,
IntVar gs = selectMin(q,

gl -> gli.size() > 1,
gl -> gli.size());

()

Select an unfixed variable with the
smallest domain size.

1if (gs == null) return EMPTY;
else {
int v = gs.min();
return branch(() -> Factory.equal(gs, Vv),
() -> Factory.notEqual(gs, Vv));
}
1)
search.onSolution(() -> println("solution:" + Arrays.toString(q)));
SearchStatistics stats = search.solve();

26

1QMI

Variable Selection

Degree-Based Heuristics

It a variable is involved in many constraints,
then it is likely that any filtering of the domain of this variable
will trigger some filtering for other variables of those constraints.

28

Dom+Deg and Dom/Deg o

» Degree of a variable x = the number of constraints on x.
> Dom+Deg: Min-Dom, and break ties with the degree.

> Dom/Deg: Select an unfixed variable with the smallest ratio between domain
Size and degree.

+

+

O— O
degree = 3

29

Weighted Degree (Wdeg) Heuristic fo

> [dea: Introduce learning to find out what the “difficult” variables are.

» Each time a constraint fails, its weight is increased (by +1).

— The idea is that if a constraint has failed a lot in the past,
then it will probably continue this trend in the future.

> \Weighted degree of a variable x = the sum of the weights of the constraints
on x and at least one other unfixed variable.

> Dom/Wdeg: Select an unfixed variable with the smallest ratio between
domain size and weighted degree.

>» Weakness: A constraint that fails may not be the only guilty one for the failure
(cascade of propagations in the fixpoint algorithm).

30

Dom/Wdeg Implementation

> Not shipped with MiniCP, but quite easy to implement.
> Each constraint should be aware of the variables in its scope.

» Add a method called scope to the class Constraint:
it returns the list of variables in the scope of the constraint.

31

Variable Selection

Impact

Impact-Based Search (IBS)

> |[dea: Take a branching decision that has the lowest estimated impact In
terms of filtering.

> Preliminaries:
P = (X, D, C)

S(P) — H | D(X) ‘ estimate of the size

of the search tree
xeX

Philippe Refalo.

Impact-based search strategies for constraint programming.
International Conference on Principles and Practice of Constraint Programming (CP), 2004.

33

’Mini

Impact-Based Search (IBS)

O r, =D 0

v ¢1

@ P =x.D.CU(c)})

v
@ Py =X, Dy, Gy
l C,:X=a

a Pk — <XaDk9 Ck>

34

= 0 (no contraction)

= 1 (failure, full contraction)

Contraction of search space with
respect to parent node:

S5(P;)
S(Py_1)

"x=a)=1-

’Mini

Impact-Based Search (IBS) o

> We can estimate over a set K of search nodes the average impact
of x=a:

T(x=a)=ﬁ- Zlk(x=a)
keX

> This estimate can also be updated at every node, with a forget factor,
iInstead of being averaged:

ILx=a)=(1—-a) - I,_;(x= a) + a - I"(x = a)

Exponential moving average « < [0,1]:
the higher a is, the faster it will

discount older observations.

35

Impact-Based Search (IBS)

» Estimation of the size of the search tree when trying x=a:

SP)-(1-Ix=a

» Estimation of the size of the search tree when labeling the variable x:

Y S(P)- (1 - I(x = a))

aeD(x)

constant whatever the variable we branch on

» |mpact of a variable:

36

0=) (I-Ix=a)

aceD(x)

Variable heuristic:

Select x with minimum I(.X)

Value heuristic: _

Select a with minimum I(x — Cl)

= 0 (no contraction)
= 1 (failure, full contraction)

’Mini

Variable Selection

activity

Activity-Based Search (ABS) 1

> [dea: Track how often a variable domain is contracted during search,
as this allows some learning.

> We expect that a variable whose domain is often contracted is a good
candidate to branch on early, in order to reduce the depth of the search tree.

38

Activity-Based Search (ABS)

’Mini

Each time a search choice is executed, increment the counter A(x), denoting
the activity of x, of every variable x having a domain contraction:

39

P=(X,D,C)

e

Laurent Michel and Pascal Van Hentenryck.

Activity-based search for black-box constraint
programming solvers. CPAIOR, 2012.

. X’ = variables with contracted domain
decay factor in [0..1]
X CX

Vx e X where |Dx)| >1:Ax) :=Akx) -y
Vxe X' : Ax) :=Ax) + 1

Variable Heuristic:
Select x maximizing

A(x)

| D(x) |

Initialization of Learning Heuristics

Activity-based search and impact-based search are initialized with some
random dives before starting a complete search:

40

’Mini

Variable Selection

most recent conflicts

_Last-Coanict Search -

» Can be used in combination with another heuristic: let us call it fallBackHeuristic.

» Let lastConflictVariable store a reference, initialized to null, to a decision variable:
this variable is the last one we branched on that led to failure of the fixpoint algorithm.

nextVarToBranchOn(X) {
1f (lastConflictVariable == null) {
return fallBackHeuristic(X)

} else {

return lastConflictVariable This variable caused the most recent conflict, so we
} may legitimately believe that branching on it may cause

a conflict again (since not that much has changed).

Christophe Lecoutre, Lakhdar Sais, Sebastien Tabary, and Vincent Vidal.
Reasoning from last conflict(s) in constraint programming.
Artificial Intelligence, 2009.

42

| ast-Conflict Search

When branching on a variable leads to a failure,
always branch on this variable first, until it is successfully fixed.

X1

x4 Impossible to fix x4 to some value. Why?
It may be in conflict with the choices on x3, x2, or x1.
Since we do not know, we should always try to branch on x4 first,
also after backtracking, as long as this conflict persists.

43

’Mini

Last-Contlict Search: Example

lastConflictVariable = null

Backtrack and select x
during variable selection

We branch on x rather than on y
or another variable.

lastConflictVariable = null:

the next decision need not be on x.

lastConflictVariable = x

44

’Mini

Conflict-Ordering Search (COS) i

» Generalization and extension of last-conflict search:

— Each branching decision is timestamped with a shared counter,
which is incremented at each failed visited node of the search tree.

— Each variable has a timestamp: it is the timestamp of the most recent node where a
failure occurred when branching on this variable,
and null if it caused no failure so far.

— COS: Select the unfixed variable with the largest timestamp.
If no unfixed variable has a failure timestamp vet,
then use a fallback heuristic.

Steven Gay, Renaud Hartert, Christophe Lecoutre, and Pierre Schaus.
Conflict ordering search for scheduling problems.

International Conference on Principles and Practice of Constraint Programming, 2015.

45

Conflict-Ordering Search (COS)

» A timestamp Is associated with each variable
and iIs increased (to the node timestamp) at each failure it causes.

» COS: Select the unfixed variable with the largest timestamp.

X=a ‘ X#d
=b @ yzb ?
‘ Z=C ‘ Z¥C _
1 e © Variable
2 3 Time-
Assume yzb

stamp

leads to fixing y

46

R

Conflict-Ordering Search (COS)

Algorithm 1: COS(P = (X,C): CSP)

47

U b W M -

@)

10
11
12
13

14
15

Output: true iff P is satisfiable

P < ¢(P)

if P = 1 then

if lastVar # null then
nConflicts < nConflicts + 1
stamp|lastVar| < nConflicts

return false

if Vo € X, |[dom(x)| = 1 then
return true

failed < {x € X : stamp|x| > 0 A |dom(x)| > 1}
if failed = () then

| lastVar < varHeuristic.select()
else

L lastVar < argmax gcsailed|stamp|z|}

v < valHeuristic|lastVar|.select()
return C(O‘S’(P|1as.‘cVar§fu) \% C'O‘S’(P|1as.‘cVar>fU)

Failure: update the timestamp.

Failure: select the variable

with the largest timestamp.

’Mini

Example fin

Consider the CSP below, whose infeasibility is not detected by the fixpoint algorithm because
of the AllDifferent decomposition. Assume we branch in the order x1, ..., X8.

x5€{0,1,2} x6¢{0,1,2}

x7€{0,1,2}

48

Example: Search Tree

49

x4

X5
X6
(x7)
(x8)

X1

X2

ITYRIRIRIRaYY!

The problem is that there is a subset of variables, {x5,x6,x7,x8}, causing the conflict.

Ideally we should detect this earlier in the search tree.

t/\ini

Example: Search Trees with Two Static Orders

x1

X3 / Search tree obtained with the

X5
Search tree obtained with the X6

static order [x5,x6,x7,x8,x1,x2,x3,x4]:
iIdeally, a heuristic learns this order.

50

t/\ini

Example: Search Tree with COS

51

’Mini

Discrepancy Search

- Very useful if you trust your value heuristic
- Search combinator L to the other techniques

Question: Assume | have a good heuiristic

53

Then this solution
should be really good.

But is this one
supposed to be
better than...

Classify solutions according to
the mistakes of the heuristic!

’Mini

Discrepancy-Based Search

> Discrepancy = the number of right decisions.

() O) O
DIPIVIDIVIPIDID
Given that:

e | trust my heuristic
 \WWrong decisions generally occur at early stages

We should visit solutions by Increasing discrepancy.
54

’Mini

Combinator: Iterative Discrepancy

Objective obj = cp.minimize(totCost);

for (int dL = 0; dL < x.length; dL++) {
DFSearch dfs = makeDfs(cp, limitedDiscrepancy(firstFail(x),dL));
dfs.optimize(obj);

limitedDiscrepancy wraps the search:

It Is called a search combinator.

55

’Mini

Implementation = Exercise fin

public class LimitedDiscrepancyBranching implements Supplier<Procedure[]> {

private int curD;
private final int maxD;
private final Supplier<Procedure[]> bs;

public LimitedDiscrepancyBranching(Supplier<Procedure[]> branching,
int maxDiscrepancy) {

1f (maxDiscrepancy < 0)
throw new IllegalArgumentException('max discrepancy should be >= 0");

this.bs = branching;

this.maxD = maxDiscrepancy;

; e Eliminate alternatives that would exceed maxD
e Wrap each alternative (closure) such that the

@Override :

public Procedure[] get() { call method of the wrappgd alter_natlves_...
// TODO e Augments curD depending on its position
throw new NotImplementedException(); * +0 for alts[0], ..., +i for alts]i]

56

TBD with Laurent

Search Wrap up

Search: Summary o

> Value selection heuristic:
e Bound-Impact Value Selector (BIVS)
* Phase saving
> Variable selection using the first-fail heuristic:
 Degree and Weighted Degree
 |mpact-Based Search (IBS):
e Choose the variable and value that have a strong impact in terms of filtering.
* The impacts are estimated and learned during the search.
e Activity-Based Search (ABS):
e Choose the variable whose domain is often filtered: activity.
 The activity is learned during the search.
e Last-Conflict Search (LC):
e Choose the variable that led to the latest conflict, if any.
 Conflict-Ordering Search (COS):
e Choose the variable with the largest timestamp.

. 59Discrepanc;y—Based Search Combinator

