Constraint
Programming




Purpose of this lecture

—Domains

— Variables

— Constraints

— Propagation: Fixpoint Algorithm



Domain fin

»\What is a domain?

— A finite set of integers that are the still possible values for a variable.

— A simple API in order to:

* Query the set.
* Remove values from the set.
e We never add a value.

» Questions:

— Representation (Data Structure)?
— API|?



Representation fin

» Some possible choices:
— A sparse set embedded in an array.
— A bit vector.
— A tree set (like red-black trees).
— A range list.
» Simplification [for the lecture]:
—We assume that the set has a lower bound of O.



Sparse Set: Visually .

> [nitialization of the set {0,1,2,3,4,5,6,7,8} for n=9 (size)

1n the set

< »| s1ze
values 0 1 2 3 4 5 6 7 8

[ I U

indices 0 1 2 3 4 5 o / 8

0 1 2 3 4 5 o / 8

Vv € {0.n—1} : values|indices|[v]] = v



Sparse Set: Visually

> Remove 4 from {0,1,2,3,4,5,6,7,8}

values

1ndices

Vve {0.n—-1}

. values|indices|[v]] = v




Sparse Set: Visually

> Remove 4 from {0,1,2,3,4,5,6,7,8}

values

1ndices

Vve {0.n—-1}

. values|indices|[v]] = v




Sparse Set: Visually .

> Removal of 4 results in {0,1,2,3,8,5,6,7} Runtime: O(1)

1n the set Removed
< > < >

size
values 0 1 2 3 8 5 6 7 4
I s =

indices 0 1 2 3 8

0 1 2 3 4 5 o / 8

Vv € {0.n—1} : values|indices|[v]] = v



Sparse Set: Visually .

» Remove 6 from {0,1,2,3,8,5,6,7}

Removed
>

1n the set

size

values

1ndices

Vv € {0.n—1} : values|indices|[v]] = v



Sparse Set: Visually .

» Remove everything but value 3 from {0,1,2,3,8,5,7} Runtime: O(1)

1n the set in the set Removed
< < —t >

Size

values

1ndices

Vv € {0.n—1} : values|indices|[v]] = v
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Complexity of Other Operations

>min(D)?
> max(D)?
>size(D)?

> contains(D,v)?
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Data Structure in Java

package minicp.state;
import java.util.NoSuchElementException;

%ﬂ;\»iniCP

public class StateSparseSet { Statelnt
private int[] values,indices;

private Statelnt size, min, max;

private int ofs, n;

public StateSparseSet(StateManager sm, int n, int ofs) ({

this.n = n; int setValue (i1int)

this.ofs = ofs; int wvalue ()

size = sm.makeStateInt(n) ;

min = sm.makeStateInt (0) ;

max = sm.makeStateInt(n - 1);

values = new int[n];

indices = new int|[n]; FaCtOr)’

for (int 1 = 0; 1 < n; 1++) {
values|[1i] = 1; -
indices[i] = i: StateInt makeStatelInt (int)
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State Factory

— |t Is a container of stateful abstraction.
— It can be backed up (saveState) and restored (restoreState).

/State Manager

13
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Why Do We Need Stateful Abstraction”

> To restore the state on backtrack.
» Consider this scenario:

D(x)={0,1,2,3,4,5,6,7,8}

y /
x!=4

x!=6
D(x)={0,1,2,3,5,7,8}

x=3

D(x)={3}
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Stateful Sparse Set .

D(x)={0,1,2,3,4,5,6,7,8}

All we need to change is that

x!=4 size is now a Statelnt

x!=6
D(x)={0,1,2,3,5,7,8}

1n the set
x=3

D()=13} s1ze

values

1nhd1ices
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Removal Operations

D(X)z{O, I ,2,3,4,5,6,7,8

x!=4
x!=6
D(x)={0,1,2,3,5,7,8}

x:

D(x)={3}

16

1n the set

removed

size

4
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Removal Operations

D(x)={0,1,2,3,4,5,6,7,8}

x!=4
x!=6
D(x)={0,1,2,3,5,7,8}

1n the set removed

s1ze

indices _

:
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Removal Operations

D(x)={0,1,2,3,4,5,6,7,8}

x!=4

x!=6 ,
D(x)={o,|,2,3,5,7,y

1N removed
x=3
-—
D(x)={3} ,
size

e 3 1 2 o0 8 5 7 6 4

1nhd1ices
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Removal Operations £

D(x)={0,1,2,3,4,5,6,7,8}

x!=4
x!=6
D(x)={0,1,2,3,5,7,8}

' Backtrack

1n removed
X=3
D(x)={3} -
S1Z
values
1ndices
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Removal Operations .

D(x)={0,1,2,3,4,5,6,7,8}

/" Backtrack

x!=4
x!=6
D(x)={0,1,2,3,5,7,8}

size

values

1nhd1ices
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Generalizing (the domains don't need to start at 0) i

package minicp.state;
import java.util.NoSuchElementException;

public class StateSparseSet {
private int[] wvalues, indices;
private StateInt size, min, max;
Add or subtract private int ofs;
private int n;
public StateSparseSet (StateManager sm, int n, int ofs)
this.n = n;
this.ofs = ofs;
size = sm.makeStatelInt(n);
_ _ min = sm.makeStateInt (0) ;
public int max() ({ max = sm.makeStateInt(n - 1) ;
max.value () + ofs; values = new int[n];
} indices = new int[n];
for (int 1 = 0; 1 < n; 1++) {
values[i] = 1;
indices|[1] = 1;

an offset to every
operation!

N }."



StateSparseSet in Java (abridged) o

public class StateSparseSet {

volid exchPositions ( boolean remove (int wval) {
int vall,int val2) { 1f ('contains(val)) return false;
int vl = wvall; val —-= ofs;
int v2 = val2; int s = size();
int il = indices|[vl]; exchPositions (val, values[s - 1]);
int 12 = indices|[Vv2]; size.decrement () ;
values[il] = v2; updateBoundsValRemoved (val) ;
values|[i2] = vl1; return true;
indices|[vl] = 12; }
indices|[v2] = 11;
} void removelAll () {size.setValue(0) ;}
boolean isEmpty () {
return size.value()==0; } void removeBelow(int wvalue) {
int size () { return size.value(); } 1f (max() < wvalue) {
boolean contains (int wval) { removeAll () ;
val —-= ofs; } else
if (val < 0 || wal >= n) for (int v = min();, v < value; v++)
return false; remove (V) ;
else }
return indices|[val] < size() ; }
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From StateSparseSet to IntDomain ADT

> Goal:
— Build a domain ADT (abstract datatype) with a StateSparseSet.

package minicp.engine.core;

public interface IntDomain ({
int min() ;
int max () ;
int size () ;
boolean contains(int v);
boolean isSingleton() ;
void remove (int v, DomainListener 1) ;
void removeAllBut (int v, DomainlListener 1) ;
volid removeBelow(int v, DomainListener 1) ;
void removeAbove (int v, DomainListener 1) ;
String toString() ;

23



IntDomain ADT Implementation

package minicp.engine.core;

public interface IntDomain {
int min () ;
int max () ;
int size();
boolean contains (int v);
boolean isSingleton();
void remove (int v, DomainlListener 1) ;
void removeAllBut (int v, DomainlListener 1) ;
void removeBelow(int v, DomainlListener 1) ;
void removeAbove (int v, DomainlListener 1) ;
String toString() ;

package minicp.engine.core;
public interface DomainListener ({
void empty () ;
void fix () ;
void change() ;
void changeMin () ;
void changeMax () ;

D(X)

24 }
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IntDomain ADT Implementation

25

package minicp.engine.core;

public class SparseSetDomain implements IntDomain {

private StateSparseSet domain;

public SparseSetDomain (StateManager sm,

int min,

int max) {

domain = new StateSparseSet(sm, max - min + 1, min);

}

public
public
public

public
public
if

int min() { return

int size () { return domain.size() ;}

domain.min () ;}

boolean contains (int v) {
return domain.contains (v) ;}

boolean isSingleton () { return domain.size ()
volid remove (i1nt v, DomainListener 1) {

(domain.contains (v)

)

boolean maxChanged = max() == v;
boolean minChanged = min() == v;

domain.remove (V) ;

i1f (domain.size ()

1l.change() ;

if (maxChanged) 1.
if (minChanged) 1.
1f (domain.size ()

== 0)1.empty ()’

changeMax () ;
changeMin() ;
== 1) 1.fix();

1;}

’Mini
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Purpose fin

» Basics of implementation:
—Domains
— Variables
— Constraints
— Propagation: Fixpoint Algorithm

260



Variables... in a nutshell!

» \ariable:
— State:

 Recall the solver that created the variable.
* Encapsulate the domain of the variable.
 Track the constraints that mention the variable.

— API:

 Domain queries (getters = accessors).
 Domain updates (contraction, fixing).
* Hookups.

First and foremost:
what is the ADT?

27
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Variable ADT

I

packageminicp.enginé.&ore;
import minicp.util.Procedure;

|
|

public interface IntVar {
Solver getSolver();

int min() ;

int max() ;

int size () ;

boolean isFixed() ;
boolean contains (int v);

remove (1nt v) ;
fix(int v);
removeBelow (int v) ;
removeAbove (1nt v) ;

whenFix (Procedure f£) ;

whenBoundChange (Procedure f£f);
whenDomainChange (Procedure f£f);
propagateOnDomainChange (Constraint c);
propagateOnFix (Constraint c);
propagateOnBoundChange (Constraint c) ;




Variable Representation -

> Instance variables:
— The solver.
— The domain (as abstract reference).

— Three stacks of constraints:
* Holding references to constraints that mention this variable.
* Devoted to specific

— Domain values were lost. _ _
D 1 b alet public class IntVarImpl implements IntVar {
— Domain became a singleton. private Solver cp;

— Min or Max was changed private IntDomain domain;
private StateStack<Constraint> onDomain;
private StateStack<Constraint> onFix;
private StateStack<Constraint> onBound;

29



Constructor 1

public IntVarImpl (Solver cp, int min, int max) { 7
| this.cp = cp; '
‘ domain = new SparseSetDomain (cp.getStateManager (), min, max); l D(x) — {mln .. max}
onDomain = new StateStack<> (cp.getStateManager()) ; |
onFix = new StateStack<> (cp.getStateManager()) ; |
onBound = new StateStack<>(cp.getStateManager()) |

Part of the state too!

30



Queries

> Everything is delegated to the domain (or straightforward):

31

@QOverride
@QOverride
@QOverride
@QOverride
@QOverride
@QOverride

public
public
public
public
public
public

Solver getSolver () {

int min ()
int max ()
int size ()

{
{
{

return cp;}

return domain.min() ;}
return domain.max () ;}
return domain.size () ;}

boolean contains(int v) { return domain.contains (v) ;}

boolean isFixed ()

{ return domain.isSingleton() ;}

’P‘*ﬂl Tal



Hookups fin

> Purposes:
— Associate constraints to variable x of a CSP < X, D, C >:

cstr(x) = {c € C | x € Vars(c)}
— Associate constraints to events on the domain of x:
onDomain(x) = {c € C | x € Vars(c) A F . calls x. propagateOnDomainChange(c)}
onFix(x) = {c € C | x € Vars(c) A F . calls x. propagateOnFix(c)}
onBound(x) = {c € C | x € Vars(c) AN F . calls x. propagateOnBoundChange(c)}

—When an event occurs, the variable triggers the “waking up” of those constraints, aka

., their scheduling or their enqueuing in the fixPoint algorithm.
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@Override

public void propagateOnDomainChange (Constraint c) {
onDomain.push(c) ;

}

@Override

public void propagateOnFix (Constraint c) {
onFix.push(c) ;

}

@Override

public void propagateOnBoundChange (Constraint c) {
onBound.push (c) ;

}

Add to the stack!




Tying It together... L

public class IntVarImpl implements IntVar ({
private Solver cp;
private IntDomain domain;
private StateStack<Constraint> onDomain;
private StateStack<Constraint> onFix;
private StateStack<Constraint> onBound;

private DomainListener domListener = new DomainlListener () ({
public void empty() { throw InconsistencyException.INCONSISTENCY; }
public void fix() { scheduleAll (onFix); }
public void change () { scheduleZAll (onDomain) ; }
public void changeMin() { scheduleAll (onBound) ; }
public void changeMax() { scheduleAll (onBound); }

};
protected void scheduleAll (StateStack<Constraint> constraints) {

for (int i = 0; i < constraints.size(); i++)
cp.schedule (constraints.get (1)) ;

34



Purpose

—Domains

— Variables

— Constraints

— Propagation: Fixpoint Algorithm

35
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Constraints... In a nutshell!

> \What we really have:
— A propagator implements a filtering algorithm for a constraint:

C(.XO, ...,xn_l) $ f};c(<Do, 9Dn—1>)

> AP

— post the constraint:
e state the constraint and hook up its variables.

— propagate the constraint:
* remove values from the domains of Vars(c) that are not in any solutions.

36
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Constraint ADT -

package mlnlcp englne core,

|
|

public interface Constraint ({
volid post() ;
void propagate() ; Core API

|
w
|
|
!
vold setScheduled (boolean scheduled) ;

boolean isScheduled() ;
volid setActive (boolean active) ;

] boolean isActive(); Performance API (later!)

L

37



Implementation

— - — = — = —

public abstract class AbstractConstraint implements Constraint ({
private final Solver cp;

private boolean scheduled = false;

private final State<Boolean> active;

public AbstractConstraint (Solver cp) {

; this.cp = cp;

active = cp.getStateManager () .makeStateRef (true) ;

}

public Solver getSolver () { return cp;}

public void post() {}
public void propagate () {}

return scheduled;}
this.active.setValue (active) ;}
return active.value () ;}

public boolean isScheduled()
public void setActive (boolean active)
public boolean isActive()

e YK e YK st

38
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| public void setScheduled (boolean scheduled) { this.scheduled = scheduled;}Perf, API



The x #y + ¢ Constraint

public class NotEqual extends AbstractConstraint {

private final IntVar x, y;

private final int c;

public NotEqual (IntVar x, IntVar y, int c) {
super (x.getSolver()) ;
this.x = x; this.y = y, this.c = c¢;

}

@Override public void post() {
if (y.isFixed()) x.remove(y.min() + c);

else 1f (x.isFixed()) y.remove(x.min() - c);

else {
X .propagateOnFix (this) ;
y .propagateOnFix (this) ;
}

}
@Override public void propagate () {

if (y.isFixed()) x.remove(y.min() + c);
else y.remove(x.min() - c);
setActive (false) ;

39
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The Constraint -

@Override public void post() {
1f (y.isFixed())
x.remove (y.min() + c);
alse 1f (x.isFixed())

.remove (x.min() - ¢): Initial inference
else {
X .propagateOnFix (this) ; .
v.propagateOnFix (this) ; Hook up the constraint

}
}

@QOverride public void propagate () {
if (y.isFixed())

x.remove(y.min() + c); :
else y.remove(x.min() - c); Respond to fixing event

setActive (false) ; .
} |1 D(y)| = 1= F(D)(x) = Dx)\{min(D(y)) + c}

40 [ D(x)| =1 = F(D)(y) = D(y)\{min(D(x)) — c}



Creating Variables & Constraints fin

> Factory Design Pattern (by “Gang of Four”):
— Collect all the “creational” behavior in one place:

public final class Factory ({
private Factory() { throw new UnsupportedOperationException() ;}
public static Solver makeSolver ()
public static IntVar makelIntVar (Solver cp, int sz) {
return new IntVarImpl (cp, sz);}
public static IntVar makeIntVar (Solver cp, int min, int max) {
return new IntVarImpl (cp, min, max) ;}
[/ ————————————— constraints ---—-—-—-—-———————————— -
public static Constraint equal (IntVar x, int v) {
return new AbstractConstraint (x.getSolver()) {
@Override
public void post() { x.fix(v);}
}s
}
public static Constraint notEqual (IntVar x, IntVar y, int c) {
return new NotEqual(x, y, c¢);}

41



Purpose

—Domains

— Variables

— Constraints

— Propagation: Fixpoint Algorithm

42
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GOaI A‘ﬂ”ﬂi

» Orchestrate the whole process:
—from adding constraints
—to computing the fixpoint.

43



Solver ADT -

package minicp.engine.core;

public interface Solver {
StateManager getStateManager() ;

void post (Constraint c); ‘
void post (Constraint ¢, boolean enforceFixPoint); *
Objective minimize (IntVar x); |
|
\

| Objective maximize (IntVar x); Model construction

|
L

volid schedule (Constraint c);

void fixPoint(); Propagation AP

volid onFixPoint (Procedure listener);

44



MiniCP Implementation -

package minicp.engine.core;
import ...;
public class MiniCP implements Solver ({
private Queue<Constraint> propagationQueue = new ArrayDeque<> () ;

private final StateManager sm;

public MiniCP (StateManager sm) { this.sm = sm;}
@Override public StateManager getStateManager () { return sm;}

@Override public void post(Constraint c) { post(c, true);}
@Override public void post(Constraint ¢, boolean enforceFixPoint) {
c.post();

if (enforceFixPoint) fixPoint() ;

}

@Override public Objective minimize (IntVar x) { return new Minimize (x) ;}
@Override public Objective maximize (IntVar x) { return minimize (Factory.minus(x)) ;}

45



MiniCP Implementation -

» Schedule;

— Add a constraint to the queue.
— But only do so if the constraint is active [to be defined later].
— And avoid adding it more than once if it is already in the queue!

» Code:

public void schedule (Constraint c) {
if (c.isActive() && 'c.isScheduled()) {
c.setScheduled (true) ;
propagationQueue.add(c) ;

46



MiniCP Implementation -

> Propagate:
—Handle a constraint pulled from the queue.
—Record that it is no longer in the queue.
— Apply the filtering if it is still active.

» Code:

private void propagate (Constraint c) {
c.setScheduled(false) ;
1f (c.isActive())
c.propagate() ;

47



MiniCP Implementation -

> Fixpoint:
— Pull constraints from the queue and propagate them.
— If some filtering finds a contradiction, then catch the exception!
— |f an exception (contradiction) was raised, then clear the queue.

» Code:

public void fixPoint () {
try {

while (!'propagationQueue.isEmpty()) {
propagate (propagationQueue.remove()) ;

}

} catch (InconsistencyException e) {

while (!'propagationQueue.isEmpty())
propagationQueue.remove () .setScheduled(false) ;

throw e;
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An 8-Queens Model

import static minicp.cp.Factory.*
public class NQueens ({
public static void main(String[] args) {
int n = 8; // number of queens and size of board
Solver cp = makeSolver() ;
IntVar[] q = makeIntVarArray(cp,n,0,n-1);
for (int i=0; i<n; i++)
for (int j = i+1l; j < n; j++) {
cp.post(notEqual (q[1], q[]]))~
cp.post(notEqual (q[1], q[J], 1-J))’
cp.post(notEqual (q[1], q[Jj]l, J-1))~’

) }}

50
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import static minicp.cp.Factory.*
public class NQueens {
public static void main(String[] args) {

int n = 8; // number of queens and size of board
Solver cp = makeSolver() ;
IntVar[] q = makeIntVarArray(cp,n,0,n-1);
for (int i=0; i<n; i++)
for (int j = i+l1l; j < n; Jj++) {
cp.post (notEqual (q[i], ql[Jj]))’
cp.post(notEqual (plus(q[i],3j-1), qljl))’
cp.post (notEqual (minus(q[1],J-1), q[Jjl))’



Constructor Blow-up

[ x!=y+v
[ x!=y*v

And you'd need to do this for all the constraints.

g

Code pasting, source of bugs (more complex algorithms), etc.

We need to find a software engineering solution.
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An 8-Queens Model -

import static minicp.cp.Factory.*
public class NQueens ({ public class NQ
public static void main(String[] args) { public static
int n = 8; // number of queens and size of board int n = 8;

Y How to implement this?
Solver cp = makeSolver() ; Solver cp

IntVar[] q = makeIntVarArray(cp,n,0,n-1); IntVar[] g =
for(int 1=0;i<n;i++
for (int jJ = i+41l; jJ < n; J++) {
cp.post(notEqual (q[1], q[3jl))’
cp.post (notEqual (q[i], qlJj]l, 1-3J));
cp.post(notEqual (q[1], q[3j]l, J-1));

import static minicp.cp.Factory.*

for(int i=0;i<n;i++
for (int j = i+1l; j < n; Jj++) { ~
cp.post (notEqual (q[i], ql[jl)); -

Cp . Post(notEqual(mlnus(qlll j-1i), q[J]))'

) )
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Option 1 £

> Do a decomposition:
— Introduce a variable for each expression.
—Add an between the fresh variable and the expression.
— Collect the new variables in an array.
— Reuse the good old constraint.

53



Practically

» Constraints to consider:

— Offset:

— Opposite:

—Scale: (with )
> Pros:

— Easy to do.
— Reuse of the other constraints.

> Cons:
— This adds to the fixpoint computation!

» Can we...
— Have our cake and eat it too?

54
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I d e a ’Mimi

> Databases: this was solved a long time ago...
— They have
— They have
> Meaning?
— A view is a fake table.
— It acts like a table.
— It smells like a table.
— But there Is neither a table nor storage behind it.

> SO...

—What about having variables that pretend to be, but rely on, others?

55



Variable Views -

> Capture simple relations:
—Binary (i.e., on 2 variables).
— Bijective.
> Examples:
—Offset: Y =X +0
— Opposite: Y =—X
—Scale: Y=a* X (fora>0)
> How to do this?
— Delegation!

56



Variable Views: Taxonomy

> Views delegate to the “real” variable and apply the mapping.

Expression A

Y=X+0 Y = IntVarViewOffset(X,0)
Y=-X Y = IntVarViewOpposite(X)

Y =a*X Y = IntVarViewMul(X,a)

S7
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Examples

» Consider:
—-Y=X+2

— X 1s an integer variable with D(X) ={1..10}
—Y Is a view variable

> Operations:

58

(Y)
(Y)

(Y, 8)

(Y, )

translates Into
translates into
translates Iinto
translates Into
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Variable Views: Offset Implementation £

public class IntVarViewOffset implements IntVar ({
private final IntVar x; *
! private final int o;
public IntVarViewOffset(IntVar x, int offset) { // y =x + o
this.x = x;
| this.o = offset;
} |
\

public Solver getSolver () { return x.getSolver() ;}
public void propagateOnDomainChange (Constraint c¢) { x.propagateOnDomainChange(c) ;}
public void propagateOnFix (Constraint c) { x.propagateOnFix(c) ;}

public void propagateOnBoundChange (Constraint c¢) { x.propagateOnBoundChange (c) ;}

public int min () { return x.min() + o;} '
public int max() { return x.max() + o;}
public int size() { return x.size() ;} )
public boolean isFixed() { return x.isFixed() ;} “
public boolean contains (int v) { return x.contains(v - 0);}

public void remove (int v) {x.remove(v - 0);}

public void fix(int v) {x.fix(v - o)}

public void removeBelow(int v) { x.removeBelow(v - 0);}

public void removeAbove (int v) { x.removeAbove(v - 0);} |
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Then...

> Use the variable view exactly like a normal variable!

> There are even factory methods to instantiate a view,
such as plus and minus:

import static minicp.cp.Factory.*
public class NQueens ({
public static void main(String[] args) {
int n = 8; // number of queens and size of board
Solver cp = makeSolver() ;
IntVar[] q = makeIntVarArray(cp,n,0,n-1);
for (int i=0;i<n;i++)
for (int jJ = i+l; j < n; Jj++) {
cp.post(notEqual (q[1], q[]j]))~
cp.post (notEqual (plus(q[i],3j-1), ql3Jl))’
cp.post (notEqual (minus(q[i],J-1i), ql3jl)):

60
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Search Lo

» Questions:
—What does the search tree ?
—How does one the search tree?
—How does one the search tree?

—How does one the search?

62



Visualization for 8-Queens

63
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Search Tree £

>» Nodes are computational states:
— They represent subproblems that are to be solved.

> Branching decisions are choices made:
— They must partition the search space.
— They act on variables.
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Branching Decisions

> Branching decisions must partition the search space.

> In practice:
— One often partitions the domain of only one variable.

— Example: _
Given D(x) = {0..(n — 1)}
 Option 1: binary labeling X=VVXFV
» Option 2: binary split x < mid(D(x)) V x > mid(D(x))

» Option 3: n-ary labeling x=0vx=1vx=2VvV---Vx=n-1
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In General

»Given a CSP CSP = (X, D, C)
>branch with  branching = {cy, ..., c;_}

> such that all solutions are preserved and found only once:

) SUX.D.Cu{c})) = S(X,D,C))
1€{0..k—1}

Vi#j€ (0.k—1}: SUX,D,CU {c) N SUX,D,CU{c)}) = B
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Requirements

> \We may not lose solutions when we branch.
> We may not repeat solutions when solving the child nodes: efficiency.

All 3 options In the example above satisfy both requirements:

X=VVXFV
x=0vx=1lvx=2V:.-Vx=n-—1
x < mid(D(x)) Vx> mid(D(x))
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Observations

> This IS a recursive process:
— Do the same reasoning at every node of the tree.

> The variable selection at any node has an impact on the tree shape.

> The partition selection impacts the shape and size of the subtrees.
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How does one the search tree?

> The definition of a search tree is made by a branching scheme:
— Algorithm, to be applied recursively, that generates the branching decisions.

— Each time:

* Select a variable.
* Select a partition.

* Produce a set of constraints: branching — {CO, cees Cp_q }

> Example with a static variable ordering:
—Let i be the index of the first still unfixed variable of the model.
— First try the minimum value in the domain of the selected variable:

bmnchingi — {xl- — min(D(xi)), X; min(D(xi))}
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How does one the search tree?

> Tree exploration means the order in which the nodes are examined.

>»What is easy to implement?

D FS (depth-first search)

> \Why?

—Low memory requirement.
— Chronological backtracking.
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How does one the search? fin

> \When all the variables are fixed:
—We have a solution and we can stop.

> \When the domain of some variable becomes empty (it has a wipe-out):
— There Is a contradiction and we should backtrack.

>»\When at least one variable x has |ID(x)| = 2:
—We need to recur.

> Therefore:
— If we want one solution, then we stop as soon as all variables are fixed.
—If we want all solutions, then we display each solution and backtrack.

/1



Depth-First Search Mivics

> |t Is a template, really!
> The abstract algorithm:
Data: The CSP (X, D, C)

Result: CPSearch({X,D,(C)) = S((X,D,C))
D* < F((X,D,C

Empty-domain detection

Solution detection

Branching
Recur




Constraint Programming



What Wil It Take? -

> The algorithm Is generic:

— Branching scheme:

— Branching scheme encapsulates the selection of a variable and a partitioning.
> The algorithm Is recursive:

— Makes DFS straightforward.
— Explores the leftmost path first!

> Key operation to recur on:
— Given (X,D,C), find a branching { co,...,Ck-1 }.
— From a branching { co,...,ck-1 } and (X,D,C):

X, D, C u{cip to form each of the k recursive calls.
(X, D, C uA{ci}) when returning from a recursive call.
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Branching Scheme: Finding a Branching -

> Task:
— Select an unfixed variable to branch on, if there is one; else selection fails.
— Select a partitioning of the domain of the selected variable (e.g., via = and #).
— Return a set of constraints to branch on.

» Qutcomes:

— If variable selection fails, then return an empty set of branches (= constraints).
— |f variable selection succeeds, then return a set of at least 2 branches.
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Procedures £

@FunctionalInterface

public interface Procedure { Procedure left = () -> cp.post(equal(qi, Vv));
/ %k Procedure right = () -> cp.post(notEqual(qi, v))
x Calls the procedure return new Procedure]|] {left,right};
*/

void call():

left.call() 'V\\right.call()

Procedure myProc = () -> System.out.println(“hello”);
myProc.call() ;
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Branching Scheme: A First-Order Example fo

public class NQueens ({
public static void main(String[] args) {
int n = 8; // number of queens and size of board
Solver cp = makeSolver();
IntVar[] g = makeIntVarArray(cp,n,0,n-1);
// ..constraints.. ..
DFSearch search = Factory.makeDfs (cp ->
int i1dx = -1;
for (int k = 0; k < g.length; k++)
if (gqg[k].size() > 1) { idx = k; break; }
i1f (1dx == -1) return new Procedure|[0];
else {
IntVar qi = g[idx];
int v = gi.min();
Procedure left = () -> cp.post(equal(gi, v)); y
Procedure right = () -> cp. post(notEqual(q1 v)) b
return new Procedure[] {left,right}; "
} branching scheme

})
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Produce <X, D, C u {ci})

> |terate:
—Produce (X, D, C u {ci}) to form each of the k recursive calls.

» That Is an entire CSP each time!

> On top of this:
— Discard (X, D, C u {ci}) when returning from a recursive call.

>» How can we do this?
> How can we do this efficiently?
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Basic ldea [naive] £

> Do not copy the whole CSP.

> Insteaa:
—Do an modification.
— Add c; to the current CSP.

> But:

— anything that might change as a result!
— That means... backup the whole state.
— So funny... we have a StateManager!

=
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Abstraction

> et us assume that the StateManager does the right thing as long as:

1. We “push” a backup before we recur in each iteration.
2. We “restore” the top-most backup before we iterate.

> \We will later show how to make a backup.
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The StateManager AP| £

package minicp.state;
import minicp.util.Procedure;

public interface StateManager ({
int getLevel() ;
void saveState() ;
volid restoreState() ;

void restoreStateUntil (int level) ; g s
void onRestore (Procedure listener) ; Low-level “Backup” API

volid withNewState (Procedure body) ; Convenience API

<T> State<T> makeStateRef (T initValue) ;
StateInt makeStateInt (int initValue) ; FaCtor)’ API
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Convenience Functions

public class SomeStatelImplementation {

public void withNewState (Procedure body) ({
final int level = getlevel()
saveState () ;
body.call() ;
restoreStateUntil (level) ;

}

public void restoreStateUntil (int level) ({
while (getlLevel() > level)

restoreState () ;
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Example of StateManager API £

StateManager sm = new Trailer()

StatelInt a
StateInt b

sm.makeStateInt(7):
sm.makeStateInt(13):

sm.saveState()
a.setValue(6
1

)
a.setValue(11):

sm.saveState():
a.setValue(4):
b.setValue(9):

sm.restoreState():

sm.restoreState():
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DFS Template fin

package minicp.search;
public class DFSearch {
private Supplier<Procedure|[]> branching;
private StateManager sm;
private List<Procedure> solutionlisteners = new LinkedList<Procedure> () ;
public DFSearch (StateManager sm, Supplier<Procedure[]> branching) ({
this.sm = sm;
this.branching = branching;
}
public void onSolution (Procedure listener) { solutionlisteners.add(listener);}
private void notifySolution() { solutionlListeners.forEach(s -> s.call()) ;}
private SearchStatistics solve (SearchStatistics statistics) {
sm.withNewState(() -> {
try {
dfs (statistics) ;
statistics.setCompleted() ;
} catch (StopSearchException ignored) ({}
})

return statistics;

}

public SearchStatistics solve() { return solve (new SearchStatistics()) ;}
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DFS Template

private void dfs (SearchStatistics statistics) {
Procedure branches = branching.get
1f (branches.length ==
statistics.incrSolutions () ;
notifySolution() ;
} else {
for (Procedure b : branches
sm.withNewState (() —> {
try {
statistics.incrNodes () ;
b.call() ;

dfs (statistics) ; Branch & Recur
} catch (InconsistencyException e) {
statistics.incrFailures() ;

})
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For each branch...



Equivalent to

private void dfs (SearchStatistics statistics) {

Procedure[] branches = branching.get() ;

if (branches.length == 0) {
statistics.incrSolutions () ;
notifySolution() ;

} else {
for (Procedure b : branches) {
sm.saveState () ;

try {
statistics.incrNodes () ;
b.call();
dfs (statistics) ;

} catch (InconsistencyException e) {

statistics.incrFailures() ;

}

sm.restoreState () ;
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Visually

> At every node:
— Save the state (domains, constraints, etc).
— Restore it on backtrack.

sm.saveState()
cp-post(q[0]=0) /

sm.restoreSta ()

38
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Two different strategies

> Copier (eager / brute-force)

—When IS called:

» Copy all stateful objects into a backup.
* Push that backup onto a stack.

—When a stateful object is modified:
* Do nothing!

—When IS called:
* Pop the topmost backup from the stack.

* Restore the content of the popped backup.

> This is a eager or brute-force
backup, copy everything without
working about small changes

> Easier to parallelize the search.
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> Traller (incremental and lazy)

—When saveState is called:

* Push the current backup onto a stack.
» Create a new current backup that is empty.

—When a stateful object is modified:
* | og the change in the current backup.

—When restoreState is called:

* Restore the content of the current backup.
* Pop the topmost backup from the stack.

» Restore the content of the popped backup into the
current backup.

> This Is a lazy backup: it can be seen as
“backup on write”.

>» Not so easy to parallelize the search



Trailer vs Copier .

StateManager sm = new Trailer() // new Copier();
StateInt a = sm.makeStateInt(7):

StateInt b = ST.makeStateInt(135;
sm.saveState():

Backup: current




Trailer vs Copier £

StateManager sm = new Trailer() // new Copier();
StateInt a = sm.makeStateInt(7):
StatelInt b = sm. makeStateInt(135
sm.saveState():

a.setValue(6):

a.setValue(115

Backup: current

Level |




Trailer vs Copier i

// new Copier();

);

= new Trail

StateManage er()
makeStateInt(7);
t(13

er
StatelInt a =
Statelnt b =
sm.saveState

makeStateln

(
a.setValue(
a.setValueé

T
n.
n.
) ;
1

sm.saveState(

S
S
S
) ;
0
1
e

¥
)}

Backup: current




Trailer vs Copier £

StateManager = new Trailer() // new Copier();
StateInt a = makeStateInt(7):
StateInt b = makeStateInt(135

S
S
S

sm.saveState():

a.setValue(6
a.setValue(1
Sm.saveState
a.setValue

e

T
n.
n.
)i
1
%

b.setValue(

Backup: current




Trailer vs Copier

= new Trailer()
makeStateInt(7):
makeStateInt(13

// new Copier();

);

StatelInt a
Statelnt b
sm.saveState

StateManager s
=S
= S
()
a.setValue(6
(1
e

a.setValue

sm.saveStat
a.setValue
b.setValue

M
M.
M.
) ;
1
(
g
sm. restoreSta

;.
4)
9):

te();

Stack<Backup> prior Stack<Backup> prior

Backup: current

Level |

a=/
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Trailer vs Copier £

StateManager = new Trailer() // new Copier();
StateInt a = makeStateInt(7)
StateInt b = makeStateInt(135

SIT

SM.

SM.
sm.saveState():

a.setValue(6):
a.setValue(115,
sm.saveState():
a.setValue(4):
b.setValue(9):
i

) ;

sm. restoreSta
sm.restoreState

- o~ E Nun

Stack<Backup> prior Stack<Backup> prior

Backup: current
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Two different strategies

> Copier (eager / brute-force)

—When IS called:

» Copy all stateful objects into a backup.
* Push that backup onto a stack.

—When a stateful object is modified:
* Do nothing!

—When IS called:
* Pop the topmost backup from the stack.

* Restore the content of the popped backup.

> This is a eager or brute-force
backup, copy everything without
working about small changes

> Easier to parallelize the search.

)/
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> Traller (incremental and lazy)

—When saveState is called:

* Push the current backup onto a stack.
» Create a new current backup that is empty.

—When a stateful object is modified:
* | og the change in the current backup.

—When restoreState is called:

* Restore the content of the current backup.
* Pop the topmost backup from the stack.

» Restore the content of the popped backup into the
current backup.

> This Is a lazy backup: it can be seen as
“backup on write”.

>» Not so easy to parallelize the search



Copier Doing a StateEntry Eager Backup o

‘publlc class Copy<T> 1mplements Storage, State<T> {
| class CopyStateEntry 1mplements StateEntry {

Object used to record

| private final T v; | a snapshot and

| | CopyStateEntry (T v) { this.v = v;} : :

f @Override public void restore() { Copy.this.v = v;}| POSSIbIY restore Its
e o content later
private T v; 4" |
protected Copy (T initial) { v = initial;}
public T setValue (T v) { return this.v = v;}

%

public String toString() { return String.valueOf(v) ;}

public T value() { return v;} l
public StateEntry save() { return new CopyStateEntry(v) ;} |

i% = — — - - . — : - ——

i

1pub11c class C0pyInt extends Ccpy<Integer>'1mplements StateInt {
” protected CopyInt(int initial) {

super (1initial) ;

}

—
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Copier StateManager L

public class Copier implements StateManager ({
class Backup extends Stack<StateEntry> ({
private int sz;

Backup () {
sz = store.size(); .
for (Storage s : store) A backup is a full snapshot

add (s.save()) ; computed upon “saveState”

} and pushed onto the stack

volid restore() {
store.setSize(sz) ;
for (StateEntry se : this)
se.restore() ;

}
}

RIS SIS IOV Al the State X objects to store upon  savesState™
private Stack<Backup> prior;

public Copier() ({
store = new Stack<Storage>() ;
prior = new Stack<Backup>();




Copier StateManager o

pUbliC int getLevel () { return prior. size () - 1,} public class Copier implements StateManager {
public int storeSize () { return store.size () ;} class Backup extends Stack<StateEntry> {
private 1nt sz;
Backup () {
- - - . sz = store.size() ;
public void saveState() { prior.add(new Backup()) 5} for (Storage s : store)
public void restoreState() { prior.pop() .restore() ;} add (s.save());

}

void restore () {

public void withNewState (Procedure body) { store.setSize(sz);

_ ] for (StateEntry se : this)
final int level = getlevel() se.restore () ;
saveState () ; } }
bOdy .call () M private Stack<Storage> store;
restoreStateUntil (level) ; private Stack<Backup> prior;

public Copier () {
} store = new Stack<Storage>() ;

prior = new Stack<Backup>() ;

public void restoreStateUntil (int level) ({
while (getlLevel() > level)
restoreState () ;

}

i
public StatelInt makeStateInt(int initValue) {
CopyInt s = new CopyInt(initValue);
store.add (s) ;

return s;

Factory creation of “Copyable Int”
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Copier. Complexity Analysis o

> \When creating a state:
—Zero.

»\When saveState is called:
— lterate over all stateful objects in order to back them up.
— Cost is O(# stateful objects), in time and space.

> \When restoreState is called:
— |terate over all entries in the popped backup.
— Cost is again O(# stateful objects).
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Two different strategies

> Copier (eager / brute-force)

—When IS called:

» Copy all stateful objects into a backup.
* Push that backup onto a stack.

—When a stateful object is modified:
* Do nothing!

—When IS called:
* Pop the topmost backup from the stack.

* Restore the content of the popped backup.

> This is a eager or brute-force
backup, copy everything without
working about small changes

> Easier to parallelize the search.
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> Traller (incremental and lazy)

—When saveState is called:

* Push the current backup onto a stack.
» Create a new current backup that is empty.

—When a stateful object is modified:
* | og the change in the current backup.

—When restoreState is called:

* Restore the content of the current backup.
* Pop the topmost backup from the stack.

» Restore the content of the popped backup into the
current backup.

> This Is a lazy backup: it can be seen
as "backup on write”.

>» Not so easy to parallelize the search



Custom State Object 1

> We need a “Stateful Int” object:
—that is created by the Trailer Factory;
—that lazily backs up to the state.

> Bottomline:
— Programmers need never worry about how stateful objects are managed.
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Implementation fin

publlc class Trailer 1mplements StateManager {
static class Backup extends Stack<StatekEntry>
Backup() {}
volid restore () {
for (StateEntry se : this)
se.restore() ; }

i
! Lazy backup object

|
private Stack<Backup> prior; Stack of D rior backups ‘\
private Backup current; Current Iazy backu

|
private long magic =

public Trailer () ({
prior = new Stack<Backup>() ;
current = new Backup();

}
| public long getMagic() { return magic;}




Implementation fin

public void pushState (StateEntry entry) { current.push(entry);} Entergichange

public int getLevel () { return prior.size() - 1;}
public void saveState() ({
prior.add(current) ;

_ur ’.:ei_t = new Backup () ; Save the current lazy backup
magic++;
and start a new one!

public void restoreState() ({
current.restore() ;

current = prior.pop() .
notifyRestore() ; Undo all the changes in current lazy backup

} and restore current to pl’eViOUS
public void restoreStateUntil (int level) {
while (getLevel() > level)
restoreState () ;

}
public StatelInt makeStatelInt(int initValue) {

return new TrailInt(this,initValue) ;} . y . .
s Factory creation of “Trailable Int



Doing a StateEntry Backup...

public class Trail<T> implements State<T> {

class TrailStateEntry implements StateEntry ({
private final T v;
TrailStateEntry (T v) { this.v = v;}
public void restore() { Trail.this.v = v;}

}

private Trailer trail;

private T v;

private long lastMagic = -1L;
protected Trail (Trailer trail, T initial) ({
this.trail = trail;v = initial;

lastMagic = trail.getMagic() - 1;
}
private void trail () {
long trailMagic = trail.getMagic();
if (lastMagic !'= trailMagic) {
lastMagic = trailMagic;

trail.pushState (new TrailStateEntry(v)) .,

}
}
public T setValue (T v) {

i1f (v '= this.v) {
trail () ;this.v = v;
}

return this.v;

}

public T wvalue() { return this.v;}
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A Stateful Set of Integers 1

> SparseSet again...

— A set of integers:
e With a Statelnt each for the size, minimum, and maximum.

» Usage scenario, for the domain of a variable:
— Only remove values from the set.
— On backtrack, restore values into the set.
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Revisiting SparseSet Operations...

> |_et’s visualize this!
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StateSparseSet ..

StateManager sm;

StateSparseSet set = sm.makeSparseSet(9);
sm.saveState();

set.remove(4);

All we need to change is that
size is now a Stateint.

1n the set

size

values

1nhd1ices
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Removal Operation i

StateManager sm;

StateSparseSet set = sm.makeSparseSet(9);
sm.saveState();

set.remove(4);

set.remove(G)H

1n the set removed

size

values 4

1hd1ices
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Removal Operation

StateManager sm;
StateSparseSet set = sm.makeSparseSet(9);
sm.saveState();
set.remove(4);
set.remove(6):
sm.saveState();
set.removeAllBut(3);

1N the set removed
e
size

values 0 1 2 3 5 7 6 4
0 1 2 3 5
0 1 2 3

3
1ndices 8
4
112

7 6 4
5 6 7 8
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Removal Operation

StateManager sm;

StateSparseSet set = sm.makeSparseSet(9);
sm.saveState();

set.remove(4);

set.remove(6):

sm.saveState();

set.removeAllBut(3);

sm.restoreState(); // 10,1,2,3,5,7,8"

values

1hd1ces
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Removal Operation £

StateManager sm; |
StateSparseSet set = sm.makeSparseSet(9);'9
sm.saveState();

set.remove(4);

set.remove(6):

sm.saveState();

set.removeAllBut(3);

sm.restoreState(); // 190,1,2,3,5,7,8}

in 1N removed removed

size

values

1hd1ices
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Removal Operation ..

StateManager sm; |
StateSparseSet set = sm.makeSparseSet(9);'9
sm.saveState();

set.remove(4);

set.remove(6):

sm.saveState();

set.removeAllBut(3);

sm.restoreState(); // 190,1,2,3,5,7,8}
sm.restoreState(); // {0..8}

1n removed

e e e >

Size
1 2 Y, 8 5 / o 4
1ndices 3 1 2 Y, 8 5 / o 4

© 1 2 3 4 5 6 7 8

values 3
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Constraint Programming

Posting constraints during search
= reversible operations



A Stateful Container £

> Another example of a “backtrack”capable stateful object:

— A stack of objects:

* Only push objects onto the stack.
* On backtrack (restore), the pushed objects should disappear.

— Beware:
* That does not work for popping objects!

» Usage scenario:

— Stacks of constraints held for a variable (e.g., onDomain):

* Only add constraints for the variable during the search.
* On backtrack, the constraints are removed.
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The StateStack -

» Simple idea:
—Maintain an ArrayList.

— Maintain its size as a Statelint.
— API:

* Pushing adds at the end of the list and increases the size.
* We never pop.
e It pops automatically on backtrack!
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Implementation

package minicp.state;

import java.util.Arraylist;

public class StateStack<E> {
private StateInt size;
private ArrayList<E> stack;

public StateStack (StateManager sm) {
size = sm.makeStateInt(0) ;
stack = new ArrayList<E>() ;

}

public void push(E elem) {
int s = size.value();
1f (stack.size() > s) stack.set(s, elem);
else stack.add(elem) ;
size.increment () ;
}
public i1nt size() { return size.value() ;}
public E get(int index) { return stack.get(index) ;}
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Posting a Constraint is a Reversible Operation fo

public class IntVarImpl implements IntVar {
private Solver cp;
private IntDomain domain;

private StateStack<Constraint> onDomain; The constraint
private StateStack<Constraint> onFix; :
private StateStack<Constraint> onBound; q[0]=0 is removed.

sm.savedtate()
cp.post(q

’m.restoreSta ()

Because the hook-up

mechanism is reversible.
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