
Constraint
Programming
Introduction to MiniCP Architecture

Purpose of this lecture

2

‣Basics of implementation:
– Domains
– Variables
– Constraints
– Propagation: Fixpoint Algorithm

Domain

3

‣What is a domain?
– A finite set of integers that are the still possible values for a variable.
– A simple API in order to:

• Query the set.
• Remove values from the set.
• We never add a value.

‣Questions:
– Representation (Data Structure)?
– API?

Representation

4

‣Some possible choices:
– A sparse set embedded in an array. ✅
– A bit vector.
– A tree set (like red-black trees).
– A range list.

‣Simplification [for the lecture]:
– We assume that the set has a lower bound of 0.

‣ Initialization of the set {0,1,2,3,4,5,6,7,8} for n = 9 (size)

Sparse Set: Visually

5

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

in the set

values

indices

∀v ∈ {0..n − 1} : values[indices[v]] = v

size

Invariant:

0 1 2 3 4 5 6 7 8

Sparse Set: Visually

6

‣Remove 4 from {0,1,2,3,4,5,6,7,8}

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

values

indices

∀v ∈ {0..n − 1} : values[indices[v]] = v

84

size

Invariant:

0 1 2 3 4 5 6 7 8

Sparse Set: Visually

7

‣Remove 4 from {0,1,2,3,4,5,6,7,8}

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

values

indices

∀v ∈ {0..n − 1} : values[indices[v]] = v

84

8 4

size

Invariant:

0 1 2 3 4 5 6 7 8

Sparse Set: Visually

8

‣Removal of 4 results in {0,1,2,3,8,5,6,7}

0 1 2 3 8 5 6 7 4

0 1 2 3 4 5 6 7 8

values

indices

∀v ∈ {0..n − 1} : values[indices[v]] = v

48

size
in the set Removed

Invariant:

Runtime: 𝛩(1)

0 1 2 3 8 5 6 7 4

Sparse Set: Visually

0 1 2 3 8 5 6 7 4

9

‣Remove 6 from {0,1,2,3,8,5,6,7}

0 1 2 3 4 5 6 7 8

values

indices

∀v ∈ {0..n − 1} : values[indices[v]] = v

76

size
in the set Removed

7 6

in the set Removed

Invariant:

Sparse Set: Visually

10

‣Remove everything but value 3 from {0,1,2,3,8,5,7}

0 1 2 3 8 5 7 6 4

0 1 2 3 8 5 7 6 4

0 1 2 3 4 5 6 7 8

values

indices

∀v ∈ {0..n − 1} : values[indices[v]] = v

in the set Removed

30

3 1 2 0 8 5 7 6 4

in the set Removed
size

Runtime: 𝛩(1)

Invariant:

Complexity of Other Operations

11

‣min(D)?

‣max(D)?

‣size(D)?

‣contains(D,v)?

Data Structure in Java

12

package minicp.state;
import java.util.NoSuchElementException;

public class StateSparseSet {
 private int[] values,indices;
 private StateInt size, min, max;
 private int ofs, n;
 public StateSparseSet(StateManager sm, int n, int ofs) {
 this.n = n;
 this.ofs = ofs;
 size = sm.makeStateInt(n);
 min = sm.makeStateInt(0);
 max = sm.makeStateInt(n - 1);
 values = new int[n];
 indices = new int[n];
 for (int i = 0; i < n; i++) {
 values[i] = i;
 indices[i] = i;
 }
 }
…

}

StateInt

int
int setValue(int)
int value()

Factory

StateInt makeStateInt(int)
void saveState()
void restoreState()
…

State Factory

13

‣Think of it this way:
– It is a container of stateful abstraction.
– It can be backed up (saveState) and restored (restoreState).

State Manager

State

restoreState

saveState

State
State

State

State

State

State
State

State
State

State

State

State

State

Why Do We Need Stateful Abstraction?

14

‣To restore the state on backtrack.
‣Consider this scenario:

D(x)={0,1,2,3,4,5,6,7,8}

x!=4
x!=6

D(x)={0,1,2,3,5,7,8}

x=3
D(x)={3}

Stateful Sparse Set

15

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

size

in the set

values

indices

All we need to change is that
size is now a StateInt.

D(x)={0,1,2,3,4,5,6,7,8}

x!=4
x!=6

D(x)={0,1,2,3,5,7,8}

x=3
D(x)={3}

Removal Operations

16

0 1 2 3 8 5 6 7 4

0 1 2 3 8 5 6 7 4

0 1 2 3 4 5 6 7 8

size

in the set removed

values

indices

D(x)={0,1,2,3,4,5,6,7,8}

x!=4
x!=6

D(x)={0,1,2,3,5,7,8}

x=3
D(x)={3}

Removal Operations

17

0 1 2 3 8 5 7 6 4

0 1 2 3 8 5 7 6 4

0 1 2 3 4 5 6 7 8

size

in the set removed

values

indices

D(x)={0,1,2,3,4,5,6,7,8}

x!=4
x!=6

D(x)={0,1,2,3,5,7,8}

x=3
D(x)={3}

Removal Operations

18

3 1 2 0 8 5 7 6 4

3 1 2 0 8 5 7 6 4

0 1 2 3 4 5 6 7 8

size

in removed

values

indices

D(x)={0,1,2,3,4,5,6,7,8}

x!=4
x!=6

D(x)={0,1,2,3,5,7,8}

x=3
D(x)={3}

Removal Operations

19

3 1 2 0 8 5 7 6 4

3 1 2 0 8 5 7 6 4

0 1 2 3 4 5 6 7 8

in removed

3 1 2 0 8 5 7 6 4

size

values

indices

D(x)={0,1,2,3,4,5,6,7,8}

x!=4
x!=6

D(x)={0,1,2,3,5,7,8}

x=3
D(x)={3}

Backtrack

Removal Operations

20

3 1 2 0 8 5 7 6 4

3 1 2 0 8 5 7 6 4

0 1 2 3 4 5 6 7 8

3 1 2 0 8 5 7 6 4

in

3 1 2 0 8 5 7 6 4

size

values

indices

D(x)={0,1,2,3,4,5,6,7,8}

x!=4
x!=6

D(x)={0,1,2,3,5,7,8}

x=3
D(x)={3}

Backtrack

Generalizing (the domains don’t need to start at 0)

21

‣How to handle arbitrary sets? package minicp.state;
import java.util.NoSuchElementException;

public class StateSparseSet {
 private int[] values, indices;
 private StateInt size, min, max;
 private int ofs;
 private int n;
 public StateSparseSet(StateManager sm, int n, int ofs) {
 this.n = n;
 this.ofs = ofs;
 size = sm.makeStateInt(n);
 min = sm.makeStateInt(0);
 max = sm.makeStateInt(n - 1);
 values = new int[n];
 indices = new int[n];
 for (int i = 0; i < n; i++) {
 values[i] = i;
 indices[i] = i;
 }
 }
…

}

public int max() {
 max.value() + ofs;
}

Add or subtract
an offset to every

operation!

StateSparseSet in Java (abridged)

22

public class StateSparseSet {
 // internal state
 void exchPositions(
 int val1,int val2) {
 int v1 = val1;
 int v2 = val2;
 int i1 = indices[v1];
 int i2 = indices[v2];
 values[i1] = v2;
 values[i2] = v1;
 indices[v1] = i2;
 indices[v2] = i1;
 }
 boolean isEmpty(){
 return size.value()==0; }
 int size(){ return size.value(); }
 boolean contains(int val) {
 val -= ofs;
 if (val < 0 || val >= n)
 return false;
 else
 return indices[val] < size();
 }

 boolean remove(int val) {
 if (!contains(val)) return false;
 val -= ofs;
 int s = size();
 exchPositions(val, values[s - 1]);
 size.decrement();
 updateBoundsValRemoved(val);
 return true;
 }

 void removeAll(){size.setValue(0);}

 void removeBelow(int value) {
 if (max() < value) {
 removeAll();
 } else
 for (int v = min(); v < value; v++)
 remove(v);
 }
}

From StateSparseSet to IntDomain ADT

23

‣Goal:
– Build a domain ADT (abstract datatype) with a StateSparseSet.

package minicp.engine.core;

public interface IntDomain {
 int min();
 int max();
 int size();
 boolean contains(int v);
 boolean isSingleton();
 void remove(int v, DomainListener l);
 void removeAllBut(int v, DomainListener l);
 void removeBelow(int v, DomainListener l);
 void removeAbove(int v, DomainListener l);
 String toString();
}

IntDomain ADT Implementation

24

‣ Implementationpackage minicp.engine.core;
public interface IntDomain {
 int min();
 int max();
 int size();
 boolean contains(int v);
 boolean isSingleton();
 void remove(int v, DomainListener l);
 void removeAllBut(int v, DomainListener l);
 void removeBelow(int v, DomainListener l);
 void removeAbove(int v, DomainListener l);
 String toString();
}

package minicp.engine.core;
public interface DomainListener {
 void empty();
 void fix();
 void change();
 void changeMin();
 void changeMax();
}

D(X)

IntDomain ADT Implementation

25

package minicp.engine.core;
public class SparseSetDomain implements IntDomain {
 private StateSparseSet domain;
 public SparseSetDomain(StateManager sm, int min, int max){
 domain = new StateSparseSet(sm, max - min + 1, min);
 }
 public int min() { return domain.min();}
 public int size(){ return domain.size();}
 public boolean contains(int v) {
 return domain.contains(v);}
 public boolean isSingleton(){ return domain.size() == 1;}
 public void remove(int v, DomainListener l) {
 if (domain.contains(v)) {
 boolean maxChanged = max() == v;
 boolean minChanged = min() == v;
 domain.remove(v);
 if (domain.size() == 0)l.empty();
 l.change();
 if (maxChanged) l.changeMax();
 if (minChanged) l.changeMin();
 if (domain.size() == 1) l.fix();
 }
 }
 …
}

 DomainListener l

Purpose

26

‣Basics of implementation:
– Domains
– Variables
– Constraints
– Propagation: Fixpoint Algorithm

Variables… in a nutshell!

27

‣Variable:
– State:

• Recall the solver that created the variable.
• Encapsulate the domain of the variable.
• Track the constraints that mention the variable.

– API:
• Domain queries (getters = accessors).
• Domain updates (contraction, fixing).
• Hookups.

First and foremost:
what is the ADT?

Variable ADT

28

package minicp.engine.core;
import minicp.util.Procedure;

public interface IntVar {
 Solver getSolver();
 int min();
 int max();
 int size();
 boolean isFixed();
 boolean contains(int v);

 void remove(int v);
 void fix(int v);
 void removeBelow(int v);
 void removeAbove(int v);

 void whenFix(Procedure f);
 void whenBoundChange(Procedure f);
 void whenDomainChange(Procedure f);
 void propagateOnDomainChange(Constraint c);
 void propagateOnFix(Constraint c);
 void propagateOnBoundChange(Constraint c);
}

Queries

Updates

Hookups

Variable Representation

29

‣ Instance variables:
– The solver.
– The domain (as abstract reference).
– Three stacks of constraints:

• Holding references to constraints that mention this variable.
• Devoted to specific events

– Domain values were lost.
– Domain became a singleton.
– Min or Max was changed

public class IntVarImpl implements IntVar {
 private Solver cp;
 private IntDomain domain;
 private StateStack<Constraint> onDomain;
 private StateStack<Constraint> onFix;
 private StateStack<Constraint> onBound;
…

Constructor

30

 public IntVarImpl(Solver cp, int min, int max) {
 this.cp = cp;
 domain = new SparseSetDomain(cp.getStateManager(), min, max);
 onDomain = new StateStack<>(cp.getStateManager());
 onFix = new StateStack<>(cp.getStateManager());
 onBound = new StateStack<>(cp.getStateManager());
 }

D(x) = {min . . max}

Part of the state too!

Queries

31

‣Everything is delegated to the domain (or straightforward):

 @Override public Solver getSolver() { return cp;}
 @Override public int min() { return domain.min();}
 @Override public int max() { return domain.max();}
 @Override public int size() { return domain.size();}
 @Override public boolean contains(int v) { return domain.contains(v);}
 @Override public boolean isFixed() { return domain.isSingleton();}

‣Purposes:
– Associate constraints to variable x of a CSP < X,D,C >:

– Associate constraints to events on the domain of x:

– When an event occurs, the variable triggers the “waking up” of those constraints, aka
their scheduling or their enqueuing in the fixPoint algorithm.

Hookups

32

cstr(x) = {c ∈ C ∣ x ∈ Vars(c)}

onDomain(x) = {c ∈ C ∣ x ∈ Vars(c) ∧ ℱc calls x . propagateOnDomainChange(c)}

onFix(x) = {c ∈ C ∣ x ∈ Vars(c) ∧ ℱc calls x . propagateOnFix(c)}

onBound(x) = {c ∈ C ∣ x ∈ Vars(c) ∧ ℱc calls x . propagateOnBoundChange(c)}

Add to the stack!

Hookups

33

 @Override
 public void propagateOnDomainChange(Constraint c) {
 onDomain.push(c);
 }
 @Override
 public void propagateOnFix(Constraint c) {
 onFix.push(c);
 }
 @Override
 public void propagateOnBoundChange(Constraint c) {
 onBound.push(c);
 }

Tying it together…

34

public class IntVarImpl implements IntVar {
 private Solver cp;
 private IntDomain domain;
 private StateStack<Constraint> onDomain;
 private StateStack<Constraint> onFix;
 private StateStack<Constraint> onBound;

 private DomainListener domListener = new DomainListener() {
 public void empty() { throw InconsistencyException.INCONSISTENCY; }
 public void fix() { scheduleAll(onFix); }
 public void change() { scheduleAll(onDomain); }
 public void changeMin() { scheduleAll(onBound); }
 public void changeMax() { scheduleAll(onBound); }
 };

 protected void scheduleAll(StateStack<Constraint> constraints) {
 for (int i = 0; i < constraints.size(); i++)
 cp.schedule(constraints.get(i));
 }

A “listener” object embedded in the variable!

Purpose

35

‣Basics of implementation:
– Domains
– Variables
– Constraints
– Propagation: Fixpoint Algorithm

Constraints… in a nutshell!

36

‣What we really have:
– A propagator implements a filtering algorithm for a constraint:

‣API:
– post the constraint:

• state the constraint and hook up its variables.
– propagate the constraint:

• remove values from the domains of Vars(c) that are not in any solutions.

c(x0, …, xn−1) ⇒ ℱc(⟨D0, …, Dn−1⟩)

Constraint ADT

37

package minicp.engine.core;

public interface Constraint {
 void post();
 void propagate();

 void setScheduled(boolean scheduled);
 boolean isScheduled();
 void setActive(boolean active);
 boolean isActive();
}

Core API

Performance API (later!)

Implementation

38

public abstract class AbstractConstraint implements Constraint {
 private final Solver cp;
 private boolean scheduled = false;
 private final State<Boolean> active;
 public AbstractConstraint(Solver cp) {
 this.cp = cp;
 active = cp.getStateManager().makeStateRef(true);
 }
 public Solver getSolver() { return cp;}

 public void post() {}
 public void propagate() {}

 public void setScheduled(boolean scheduled) { this.scheduled = scheduled;}
 public boolean isScheduled() { return scheduled;}
 public void setActive(boolean active) { this.active.setValue(active);}
 public boolean isActive() { return active.value();}
}

Perf. API

The x ≠ y + c Constraint

39

public class NotEqual extends AbstractConstraint {
 private final IntVar x, y;
 private final int c;
 public NotEqual(IntVar x, IntVar y, int c) {
 super(x.getSolver());
 this.x = x; this.y = y; this.c = c;
 }
 @Override public void post() {
 if (y.isFixed()) x.remove(y.min() + c);
 else if (x.isFixed()) y.remove(x.min() - c);
 else {
 x.propagateOnFix(this);
 y.propagateOnFix(this);
 }
 }
 @Override public void propagate() {
 if (y.isFixed()) x.remove(y.min() + c);
 else y.remove(x.min() - c);
 setActive(false);
 }
}

The x ≠ y + c Constraint

40

@Override public void post() {
 if (y.isFixed())
 x.remove(y.min() + c);
 else if (x.isFixed())
 y.remove(x.min() - c);
 else {
 x.propagateOnFix(this);
 y.propagateOnFix(this);
 }
}
@Override public void propagate() {
 if (y.isFixed())
 x.remove(y.min() + c);
 else y.remove(x.min() - c);
 setActive(false);
}

Hook up the constraint

Respond to fixing event

|D(y) | = 1 ⇒ ℱc(D)(x) = D(x)∖{min(D(y)) + c}

|D(x) | = 1 ⇒ ℱc(D)(y) = D(y)∖{min(D(x)) − c}

Initial inference

Creating Variables & Constraints

41

‣Factory Design Pattern (by “Gang of Four”):
– Collect all the “creational” behavior in one place:

public final class Factory {
 private Factory() { throw new UnsupportedOperationException();}
 public static Solver makeSolver() …
 public static IntVar makeIntVar(Solver cp, int sz) {
 return new IntVarImpl(cp, sz);}
 public static IntVar makeIntVar(Solver cp, int min, int max) {
 return new IntVarImpl(cp, min, max);}
 // -------------- constraints -----------------------
 public static Constraint equal(IntVar x, int v) {
 return new AbstractConstraint(x.getSolver()) {
 @Override
 public void post() { x.fix(v);}
 };
 }
 public static Constraint notEqual(IntVar x, IntVar y, int c) {
 return new NotEqual(x, y, c);}

 …
}

Purpose

42

‣Basics of implementation:
– Domains
– Variables
– Constraints
– Propagation: Fixpoint Algorithm

Goal

43

‣Orchestrate the whole process:
– from adding constraints
– to computing the fixpoint.

Solver ADT

44

‣A simple interface for the solver
package minicp.engine.core;

public interface Solver {
 StateManager getStateManager();

 void post(Constraint c);
 void post(Constraint c, boolean enforceFixPoint);
 Objective minimize(IntVar x);
 Objective maximize(IntVar x);

 void schedule(Constraint c);
 void fixPoint();

 void onFixPoint(Procedure listener);
}

Model construction

Propagation API

MiniCP Implementation

45

package minicp.engine.core;

import …;

public class MiniCP implements Solver {
 private Queue<Constraint> propagationQueue = new ArrayDeque<>();
 private final StateManager sm;

 public MiniCP(StateManager sm) { this.sm = sm;}
 @Override public StateManager getStateManager() { return sm;}

 @Override public void post(Constraint c) { post(c, true);}
 @Override public void post(Constraint c, boolean enforceFixPoint) {
 c.post();
 if (enforceFixPoint) fixPoint();
 }
 @Override public Objective minimize(IntVar x) { return new Minimize(x);}
 @Override public Objective maximize(IntVar x) { return minimize(Factory.minus(x));}
 …
}

MiniCP Implementation

46

‣Schedule:
– Add a constraint to the queue.
– But only do so if the constraint is active [to be defined later].
– And avoid adding it more than once if it is already in the queue!

‣Code:
 public void schedule(Constraint c) {
 if (c.isActive() && !c.isScheduled()) {
 c.setScheduled(true);
 propagationQueue.add(c);
 }
 }

MiniCP Implementation

47

‣Propagate:
– Handle a constraint pulled from the queue.
– Record that it is no longer in the queue.
– Apply the filtering if it is still active.

‣Code:
 private void propagate(Constraint c) {
 c.setScheduled(false);
 if (c.isActive())
 c.propagate();
 }

MiniCP Implementation

48

‣Fixpoint:
– Pull constraints from the queue and propagate them.
– If some filtering finds a contradiction, then catch the exception!
– If an exception (contradiction) was raised, then clear the queue.

‣Code:
 public void fixPoint() {
 try {
 while (!propagationQueue.isEmpty()) {
 propagate(propagationQueue.remove());
 }
 } catch (InconsistencyException e) {
 while (!propagationQueue.isEmpty())
 propagationQueue.remove().setScheduled(false);
 throw e;
 }
 }

Constraint
Programming
Variable Views

An 8-Queens Model

50

import static minicp.cp.Factory.*
public class NQueens {
 public static void main(String[] args) {
 int n = 8; // number of queens and size of board
 Solver cp = makeSolver();
 IntVar[] q = makeIntVarArray(cp,n,0,n-1);
 for (int i=0; i<n; i++)
 for (int j = i+1; j < n; j++) {
 cp.post(notEqual(q[i], q[j]));
 cp.post(notEqual(q[i], q[j], i-j));
 cp.post(notEqual(q[i], q[j], j-i));
 }

 }
}}

import static minicp.cp.Factory.*
public class NQueens {
 public static void main(String[] args) {
 int n = 8; // number of queens and size of board
 Solver cp = makeSolver();
 IntVar[] q = makeIntVarArray(cp,n,0,n-1);
 for (int i=0; i<n; i++)
 for (int j = i+1; j < n; j++) {
 cp.post(notEqual(q[i], q[j]));
 cp.post(notEqual(plus(q[i],j-i), q[j]));
 cp.post(notEqual(minus(q[i],j-i), q[j]));
 }

 }
}}

Constructor Blow-up

51

public NotEqualPlus(IntVar x, IntVar y, int v) // x != y + v
public NotEqualMul(IntVar x, IntVar y, int v) // x != y * v

…
And you’d need to do this for all the constraints.

💣
Code pasting, source of bugs (more complex algorithms), etc.

We need to find a software engineering solution.

An 8-Queens Model

52

import static minicp.cp.Factory.*
public class NQueens {
 public static void main(String[] args) {
 int n = 8; // number of queens and size of board
 Solver cp = makeSolver();
 IntVar[] q = makeIntVarArray(cp,n,0,n-1);
 for(int i=0;i<n;i++)
 for (int j = i+1; j < n; j++) {
 cp.post(notEqual(q[i], q[j]));
 cp.post(notEqual(q[i], q[j], i-j));
 cp.post(notEqual(q[i], q[j], j-i));
 }

 }
}}

import static minicp.cp.Factory.*
public class NQueens {
 public static void main(String[] args) {
 int n = 8; // number of queens and size of board
 Solver cp = makeSolver();
 IntVar[] q = makeIntVarArray(cp,n,0,n-1);
 for(int i=0;i<n;i++)
 for (int j = i+1; j < n; j++) {
 cp.post(notEqual(q[i], q[j]));
 cp.post(notEqual(plus(q[i],j-i), q[j]));
 cp.post(notEqual(minus(q[i],j-i), q[j]));
 }

 }
}}

How to implement this?

Option 1

53

‣Do a decomposition:
– Introduce a variable for each expression.
– Add an equality constraint between the fresh variable and the expression.
– Collect the new variables in an array.
– Reuse the good old NotEqual constraint.

Practically

54

‣Constraints to consider:
– Offset: Y = X + o
– Opposite: Y = –X
– Scale: Y = a * X (with a > 0)

‣Pros:
– Easy to do.
– Reuse of the other constraints.

‣Cons:
– This adds to the fixpoint computation!

‣Can we…
– Have our cake and eat it too?

Idea

55

‣Databases: this was solved a long time ago…
– They have TABLES.
– They have VIEWS.

‣Meaning?
– A view is a fake table.
– It acts like a table.
– It smells like a table.
– But there is neither a table nor storage behind it.

‣So…
– What about having FAKE variables that pretend to be, but rely on, others?

Variable Views

56

‣Capture simple relations:
– Binary (i.e., on 2 variables).
– Bijective.

‣Examples:
– Offset: Y = X + o
– Opposite: Y = –X
– Scale: Y = a * X (for a > 0)

‣How to do this?
– Delegation!

Variable Views: Taxonomy

57

‣Views also implement the variable interface.
‣Views delegate to the “real” variable and apply the mapping.

Expression View

Y = X + o Y = IntVarViewOffset(X,o)

Y = – X Y = IntVarViewOpposite(X)

Y = a * X Y = IntVarViewMul(X,a)

Examples

58

‣Consider:
– Y = X + 2
– X is an integer variable with D(X) = {1..10}
– Y is a view variable

‣Operations:
– contains(Y, 8) translates into contains(X, 8 – 2)
– removeBelow(Y, 5) translates into removeBelow(X, 5 – 2)
– min(Y) translates into min(X) + 2
– max(Y) translates into max(X) + 2

Variable Views: Offset Implementation

59

public class IntVarViewOffset implements IntVar {
 private final IntVar x;
 private final int o;
 public IntVarViewOffset(IntVar x, int offset) { // y = x + o
 this.x = x;
 this.o = offset;
 }
 public Solver getSolver() { return x.getSolver();}
 public void propagateOnDomainChange(Constraint c) { x.propagateOnDomainChange(c);}
 public void propagateOnFix(Constraint c) { x.propagateOnFix(c);}
 public void propagateOnBoundChange(Constraint c) { x.propagateOnBoundChange(c);}

 public int min() { return x.min() + o;}
 public int max() { return x.max() + o;}
 public int size() { return x.size();}
 public boolean isFixed() { return x.isFixed();}
 public boolean contains(int v) { return x.contains(v - o);}
 public void remove(int v) {x.remove(v - o);}
 public void fix(int v) {x.fix(v - o);}
 public void removeBelow(int v) { x.removeBelow(v - o);}
 public void removeAbove(int v) { x.removeAbove(v - o);}
}

Then…

60

‣Use the variable view exactly like a normal variable!
‣There are even factory methods to instantiate a view, 

such as plus and minus:

import static minicp.cp.Factory.*
public class NQueens {
 public static void main(String[] args) {
 int n = 8; // number of queens and size of board
 Solver cp = makeSolver();
 IntVar[] q = makeIntVarArray(cp,n,0,n-1);
 for(int i=0;i<n;i++)
 for (int j = i+1; j < n; j++) {
 cp.post(notEqual(q[i], q[j]));
 cp.post(notEqual(plus(q[i],j-i), q[j]));
 cp.post(notEqual(minus(q[i],j-i), q[j]));
 }

 }
 }
}

Constraint Programming
State Management and Search

Search

62

‣Questions:
– What does the search tree look like?
– How does one define the search tree?
– How does one explore the search tree?
– How does one terminate the search?

Visualization for 8-Queens

63

q[0]=0

q[0]={0..7},q[1]={0..7},…,q[7]={0..7}

q[0]≠0q[0]={0}
q[1]={2..7}

…
q[7]={1..6}

q[0]={1..7}
q[1]={0..7}

…
q[7]={0..7}

q[1]=2 q[1]≠2

q[0]={0}
q[1]={2}

…
q[7]={1,3..6}

q[0]={0}
q[1]={3..7}

…
q[7]={1..6}

Search Tree

64

‣Nodes are computational states:
– They represent subproblems that are to be solved. 

‣Branching decisions are choices made:
– They must partition the search space.
– They act on variables.

Branching Decisions

65

‣Branching decisions must partition the search space.
‣ In practice:

– One often partitions the domain of only one variable.
– Example:

• Option 1: binary labeling

• Option 2: binary split

• Option 3: n-ary labeling

• …

x = v ∨ x ≠ v

Given D(x) = {0..(n − 1)}

x ≤ mid(D(x)) ∨ x > mid(D(x))

x = 0 ∨ x = 1 ∨ x = 2 ∨ ⋯ ∨ x = n − 1

In General

66

‣Given a CSP

‣branch with

‣such that all solutions are preserved and found only once:

branching = {c0, …, ck−1}

CSP = ⟨X, D, C⟩

⋃
i∈{0..k−1}

𝒮(⟨X, D, C ∪ {ci}⟩) = 𝒮(⟨X, D, C⟩)

∀i ≠ j ∈ {0..k − 1} : 𝒮(⟨X, D, C ∪ {ci}⟩) ∩ 𝒮(⟨X, D, C ∪ {cj}⟩) = ∅

Requirements

67

‣We may not lose solutions when we branch.
‣We may not repeat solutions when solving the child nodes: efficiency.

All 3 options in the example above satisfy both requirements:

x = v ∨ x ≠ v

x ≤ mid(D(x)) ∨ x > mid(D(x))
x = 0 ∨ x = 1 ∨ x = 2 ∨ ⋯ ∨ x = n − 1

Observations

68

‣This is a recursive process:
– Do the same reasoning at every node of the tree. 

‣The variable selection at any node has an impact on the tree shape. 

‣The partition selection impacts the shape and size of the subtrees.

How does one define the search tree?

69

‣The definition of a search tree is made by a branching scheme:
– Algorithm, to be applied recursively, that generates the branching decisions.
– Each time:

• Select a variable.
• Select a partition.
• Produce a set of constraints:

‣Example with a static variable ordering:
– Let i be the index of the first still unfixed variable of the model.
– First try the minimum value in the domain of the selected variable:

branching = {c0, …, ck−1}

branchingi = {xi = min(D(xi)), xi ≠ min(D(xi))}

How does one explore the search tree?

70

‣Tree exploration means the order in which the nodes are examined.

‣What is easy to implement?

‣Why?

– Low memory requirement.
– Chronological backtracking.

DFS (depth-first search)

How does one terminate the search?

71

‣When all the variables are fixed:
– We have a solution and we can stop.

‣When the domain of some variable becomes empty (it has a wipe-out):
– There is a contradiction and we should backtrack.

‣When at least one variable x has |D(x)| ≥ 2:
– We need to recur.

‣Therefore:
– If we want one solution, then we stop as soon as all variables are fixed.
– If we want all solutions, then we display each solution and backtrack.

Depth-First Search

72

‣ It is a template, really!
‣The abstract algorithm:

Empty-domain detection

Solution detection

Branching
Recur

Data: The CSP hX,D, Ci
Result: CPSearch(hX,D, Ci) = S(hX,D, Ci)
D⇤ F(hX,D, Ci)
if |D⇤| = 0 then

return ;
end
else if |D⇤| = 1 then

return {D⇤}
end
else

(c0, · · · , ck�1) branch(hX,D⇤, Ci)
return

Sk
I=1 CPSearch(hX,D⇤, C [{ci}i)

end
<latexit sha1_base64="uJtTgzUTKGMSYxlZXiIuwbGUFDY=">AAAFX3icfVRdb9MwFM3Kykb52uAJ8WLRInXTmJK9gJgmTXSgTWhQ9i3VXeU4t61Vx4lsh7Xy8rP4MYgnJPgPPOK06dR2Uy1FubnnHB/7+jp+zJnSrvtzoXBvsXh/aflB6eGjx0+erqw+O1NRIimc0ohH8sInCjgTcKqZ5nARSyChz+Hc79Uy/Pw7SMUicaIHMTRD0hGszSjRNtVaLXzBPnSYMIR3Isl0N0wb+80S3ouErksm9DGELLMRJYQ/X+0RTcxJF1DtuI4qmBPR4YAuNhCmhAcbqIawHOYq6ZB/BCrh2lSwhr7W2tTqx0Ak7abVOdo1tINMlkTHk7wRrTYmZQ52CVnych3hDmiFcJtxDXLu5BWEt60SH7RN5TqXX1tHt5IiYwELHYFOpLCTQxjrgQKdazJH/JErmNV6d2hNjuN0Vj1iVqq05dpNBZFWG7Rlem+8dG28j7xcvl3zdLHySSfKgLfR0JgTH7jJ+uB9LptZkM86NIlb5mDHSy9NL0XzDmXskxXOqhA2tMVwiiZss+nTEgYRTDRPa6XsbrrDgW4HXh6UnXzUW6sL/3AQ0SQEoSknSjU8N9ZNQ6RmlIM1SBTEhPZIBxo2FCQE1TTDzk/Ra5sJUDuS9hEaDbOTCkNCpQahb5kh0V01i2XJu7BGotvvmoaJONEg6MionXCkI5RdIxQwCVTzgQ0ItVtnFNEukYTa9ptxGddmC26cSiUs4IpGYUhEgEMmgihseE2ThdWyt5ZO46R/g5P+HTgTjMZmeJyKmkP7Waun05zsOM3oUu3NQCriZnzdppHRbcrBTxa0/wWwhyTh0G7jawyS6EiuG0xkxy4iNfl7Ho30RzT7tr3izXbG7eBsa9NzN71vW+XdD3nXLDsvnVdO1fGct86us+/UnVOHFn4UfhX+FP4u/i4uFZ8UV0bUwkKuee5MjeKL/2CtwDg=</latexit><latexit sha1_base64="uJtTgzUTKGMSYxlZXiIuwbGUFDY=">AAAFX3icfVRdb9MwFM3Kykb52uAJ8WLRInXTmJK9gJgmTXSgTWhQ9i3VXeU4t61Vx4lsh7Xy8rP4MYgnJPgPPOK06dR2Uy1FubnnHB/7+jp+zJnSrvtzoXBvsXh/aflB6eGjx0+erqw+O1NRIimc0ohH8sInCjgTcKqZ5nARSyChz+Hc79Uy/Pw7SMUicaIHMTRD0hGszSjRNtVaLXzBPnSYMIR3Isl0N0wb+80S3ouErksm9DGELLMRJYQ/X+0RTcxJF1DtuI4qmBPR4YAuNhCmhAcbqIawHOYq6ZB/BCrh2lSwhr7W2tTqx0Ak7abVOdo1tINMlkTHk7wRrTYmZQ52CVnych3hDmiFcJtxDXLu5BWEt60SH7RN5TqXX1tHt5IiYwELHYFOpLCTQxjrgQKdazJH/JErmNV6d2hNjuN0Vj1iVqq05dpNBZFWG7Rlem+8dG28j7xcvl3zdLHySSfKgLfR0JgTH7jJ+uB9LptZkM86NIlb5mDHSy9NL0XzDmXskxXOqhA2tMVwiiZss+nTEgYRTDRPa6XsbrrDgW4HXh6UnXzUW6sL/3AQ0SQEoSknSjU8N9ZNQ6RmlIM1SBTEhPZIBxo2FCQE1TTDzk/Ra5sJUDuS9hEaDbOTCkNCpQahb5kh0V01i2XJu7BGotvvmoaJONEg6MionXCkI5RdIxQwCVTzgQ0ItVtnFNEukYTa9ptxGddmC26cSiUs4IpGYUhEgEMmgihseE2ThdWyt5ZO46R/g5P+HTgTjMZmeJyKmkP7Waun05zsOM3oUu3NQCriZnzdppHRbcrBTxa0/wWwhyTh0G7jawyS6EiuG0xkxy4iNfl7Ho30RzT7tr3izXbG7eBsa9NzN71vW+XdD3nXLDsvnVdO1fGct86us+/UnVOHFn4UfhX+FP4u/i4uFZ8UV0bUwkKuee5MjeKL/2CtwDg=</latexit><latexit sha1_base64="uJtTgzUTKGMSYxlZXiIuwbGUFDY=">AAAFX3icfVRdb9MwFM3Kykb52uAJ8WLRInXTmJK9gJgmTXSgTWhQ9i3VXeU4t61Vx4lsh7Xy8rP4MYgnJPgPPOK06dR2Uy1FubnnHB/7+jp+zJnSrvtzoXBvsXh/aflB6eGjx0+erqw+O1NRIimc0ohH8sInCjgTcKqZ5nARSyChz+Hc79Uy/Pw7SMUicaIHMTRD0hGszSjRNtVaLXzBPnSYMIR3Isl0N0wb+80S3ouErksm9DGELLMRJYQ/X+0RTcxJF1DtuI4qmBPR4YAuNhCmhAcbqIawHOYq6ZB/BCrh2lSwhr7W2tTqx0Ak7abVOdo1tINMlkTHk7wRrTYmZQ52CVnych3hDmiFcJtxDXLu5BWEt60SH7RN5TqXX1tHt5IiYwELHYFOpLCTQxjrgQKdazJH/JErmNV6d2hNjuN0Vj1iVqq05dpNBZFWG7Rlem+8dG28j7xcvl3zdLHySSfKgLfR0JgTH7jJ+uB9LptZkM86NIlb5mDHSy9NL0XzDmXskxXOqhA2tMVwiiZss+nTEgYRTDRPa6XsbrrDgW4HXh6UnXzUW6sL/3AQ0SQEoSknSjU8N9ZNQ6RmlIM1SBTEhPZIBxo2FCQE1TTDzk/Ra5sJUDuS9hEaDbOTCkNCpQahb5kh0V01i2XJu7BGotvvmoaJONEg6MionXCkI5RdIxQwCVTzgQ0ItVtnFNEukYTa9ptxGddmC26cSiUs4IpGYUhEgEMmgihseE2ThdWyt5ZO46R/g5P+HTgTjMZmeJyKmkP7Waun05zsOM3oUu3NQCriZnzdppHRbcrBTxa0/wWwhyTh0G7jawyS6EiuG0xkxy4iNfl7Ho30RzT7tr3izXbG7eBsa9NzN71vW+XdD3nXLDsvnVdO1fGct86us+/UnVOHFn4UfhX+FP4u/i4uFZ8UV0bUwkKuee5MjeKL/2CtwDg=</latexit><latexit sha1_base64="uJtTgzUTKGMSYxlZXiIuwbGUFDY=">AAAFX3icfVRdb9MwFM3Kykb52uAJ8WLRInXTmJK9gJgmTXSgTWhQ9i3VXeU4t61Vx4lsh7Xy8rP4MYgnJPgPPOK06dR2Uy1FubnnHB/7+jp+zJnSrvtzoXBvsXh/aflB6eGjx0+erqw+O1NRIimc0ohH8sInCjgTcKqZ5nARSyChz+Hc79Uy/Pw7SMUicaIHMTRD0hGszSjRNtVaLXzBPnSYMIR3Isl0N0wb+80S3ouErksm9DGELLMRJYQ/X+0RTcxJF1DtuI4qmBPR4YAuNhCmhAcbqIawHOYq6ZB/BCrh2lSwhr7W2tTqx0Ak7abVOdo1tINMlkTHk7wRrTYmZQ52CVnych3hDmiFcJtxDXLu5BWEt60SH7RN5TqXX1tHt5IiYwELHYFOpLCTQxjrgQKdazJH/JErmNV6d2hNjuN0Vj1iVqq05dpNBZFWG7Rlem+8dG28j7xcvl3zdLHySSfKgLfR0JgTH7jJ+uB9LptZkM86NIlb5mDHSy9NL0XzDmXskxXOqhA2tMVwiiZss+nTEgYRTDRPa6XsbrrDgW4HXh6UnXzUW6sL/3AQ0SQEoSknSjU8N9ZNQ6RmlIM1SBTEhPZIBxo2FCQE1TTDzk/Ra5sJUDuS9hEaDbOTCkNCpQahb5kh0V01i2XJu7BGotvvmoaJONEg6MionXCkI5RdIxQwCVTzgQ0ItVtnFNEukYTa9ptxGddmC26cSiUs4IpGYUhEgEMmgihseE2ThdWyt5ZO46R/g5P+HTgTjMZmeJyKmkP7Waun05zsOM3oUu3NQCriZnzdppHRbcrBTxa0/wWwhyTh0G7jawyS6EiuG0xkxy4iNfl7Ho30RzT7tr3izXbG7eBsa9NzN71vW+XdD3nXLDsvnVdO1fGct86us+/UnVOHFn4UfhX+FP4u/i4uFZ8UV0bUwkKuee5MjeKL/2CtwDg=</latexit>

Constraint Programming
DFS Implementation

What Will It Take?

74

‣The algorithm is generic:
– Branching scheme: make it a first-order function.
– Branching scheme encapsulates the selection of a variable and a partitioning.

‣The algorithm is recursive:
– Makes DFS straightforward.
– Explores the leftmost path first!

‣Key operation to recur on:
– Given ⟨X,D,C⟩, find a branching { c0,…,ck–1 }.
– From a branching { c0,…,ck–1 } and ⟨X,D,C⟩:

• Produce ⟨X, D, C ∪ {ci}⟩ to form each of the k recursive calls.
• Discard ⟨X, D, C ∪ {ci}⟩ when returning from a recursive call.

Branching Scheme: Finding a Branching

75

‣Task:
– Select an unfixed variable to branch on, if there is one; else selection fails.
– Select a partitioning of the domain of the selected variable (e.g., via = and ≠).
– Return a set of constraints to branch on.

‣Outcomes:
– If variable selection fails, then return an empty set of branches (= constraints).
– If variable selection succeeds, then return a set of at least 2 branches.

Procedures

76

@FunctionalInterface
public interface Procedure {
 /**
 * Calls the procedure
 */
 void call();
}

Procedure myProc = () -> System.out.println(“hello”);
myProc.call();

Procedure left = () -> cp.post(equal(qi, v));
Procedure right = () -> cp.post(notEqual(qi, v));
return new Procedure[]{left,right};

left.call() right.call()

Branching Scheme: A First-Order Example

77

()

{qi = v, qi ≠ v}∅

public class NQueens {
 public static void main(String[] args) {
 int n = 8; // number of queens and size of board
 Solver cp = makeSolver();
 IntVar[] q = makeIntVarArray(cp,n,0,n-1);

// …constraints… …
 DFSearch search = Factory.makeDfs(cp, () -> {
 int idx = -1;
 for (int k = 0; k < q.length; k++)
 if (q[k].size() > 1) { idx = k; break; }
 if (idx == -1) return new Procedure[0];
 else {
 IntVar qi = q[idx];
 int v = qi.min();
 Procedure left = () -> cp.post(equal(qi, v));
 Procedure right = () -> cp.post(notEqual(qi, v));
 return new Procedure[]{left,right};
 }
 });

 }
}}

branching scheme

Constraint Programming
DFS State Restoration

Produce ⟨X, D, C ∪ {ci}⟩

79

‣ Iterate:
– Produce ⟨X, D, C ∪ {ci}⟩ to form each of the k recursive calls.

‣That is an entire CSP each time!

‣On top of this:
– Discard ⟨X, D, C ∪ {ci}⟩ when returning from a recursive call.

‣How can we do this?
‣How can we do this efficiently?

Basic Idea [naïve]

80

‣Do not copy the whole CSP.
‣ Instead:

– Do an in-place modification.
– Add ci to the current CSP.

‣But:
– Back up anything that might change as a result!
– That means… backup the whole state.
– So funny… we have a StateManager!

😁

Abstraction

81

‣Let us assume that the StateManager does the right thing as long as:

‣We will later show how to make a backup.

1. We “push” a backup before we recur in each iteration.
2. We “restore” the top-most backup before we iterate.

The StateManager API

82

‣Overview
package minicp.state;
import minicp.util.Procedure;

public interface StateManager {
 int getLevel();
 void saveState();
 void restoreState();
 void restoreStateUntil(int level);
 void onRestore(Procedure listener);

 void withNewState(Procedure body);

 <T> State<T> makeStateRef(T initValue);
 StateInt makeStateInt(int initValue);
}

Low-level “Backup” API

Convenience API

Factory API

Convenience Functions

83

public class SomeStateImplementation {
 …
 public void withNewState(Procedure body) {
 final int level = getLevel();
 saveState();
 body.call();
 restoreStateUntil(level);
 }
 public void restoreStateUntil(int level) {
 while (getLevel() > level)
 restoreState();
 }
}

Example of StateManager API

84

StateManager sm = new Trailer() // new Copier();

// Two stateful int inside sm
StateInt a = sm.makeStateInt(7);
StateInt b = sm.makeStateInt(13);
// Record current state a=7, b=13 and increase the level to 0:
sm.saveState();
 a.setValue(6);
 a.setValue(11);
 // Record current state a=11, b=13 and increase the level to 1:
 sm.saveState();
 a.setValue(4);
 b.setValue(9);
 // Restore a=11, b=13:
 sm.restoreState();
// Restore a=7, b=13:
sm.restoreState();

DFS Template

85

package minicp.search;
public class DFSearch {
 private Supplier<Procedure[]> branching;
 private StateManager sm;
 private List<Procedure> solutionListeners = new LinkedList<Procedure>();
 public DFSearch(StateManager sm, Supplier<Procedure[]> branching) {
 this.sm = sm;
 this.branching = branching;
 }
 public void onSolution(Procedure listener) { solutionListeners.add(listener);}
 private void notifySolution() { solutionListeners.forEach(s -> s.call());}
 private SearchStatistics solve(SearchStatistics statistics) {
 sm.withNewState(() -> {
 try {
 dfs(statistics);
 statistics.setCompleted();
 } catch (StopSearchException ignored) {}
 });
 return statistics;
 }
 public SearchStatistics solve() { return solve(new SearchStatistics());}
}

DFS Template

86

 private void dfs(SearchStatistics statistics) {
 Procedure[] branches = branching.get();
 if (branches.length == 0) {
 statistics.incrSolutions();
 notifySolution();
 } else {
 for (Procedure b : branches) {
 sm.withNewState(() -> {
 try {
 statistics.incrNodes();
 b.call();
 dfs(statistics);
 } catch (InconsistencyException e) {
 statistics.incrFailures();
 }
 });
 }
 }
 }

Report a solution

Test branching validity

For each branch…

Branch & Recur

Equivalent to

87

 private void dfs(SearchStatistics statistics) {
 Procedure[] branches = branching.get();
 if (branches.length == 0) {
 statistics.incrSolutions();
 notifySolution();
 } else {
 for (Procedure b : branches) {
 sm.saveState();
 try {
 statistics.incrNodes();
 b.call();
 dfs(statistics);
 } catch (InconsistencyException e) {
 statistics.incrFailures();
 }
 sm.restoreState();
 }
 }
 }

Visually

88

‣At every node:
– Save the state (domains, constraints, etc).
– Restore it on backtrack.

sm.saveState()
cp.post(q[0]=0)

sm.restoreState()

Constraint Programming
State Management: Copying vs Trailing

Two different strategies

90

‣Copier (eager / brute-force)
– When saveState is called:

• Copy all stateful objects into a backup.
• Push that backup onto a stack.

– When a stateful object is modified:
• Do nothing!

– When restoreState is called:
• Pop the topmost backup from the stack.
• Restore the content of the popped backup.

‣This is a eager or brute-force
backup, copy everything without
working about small changes
‣Easier to parallelize the search.

‣Trailer (incremental and lazy)
– When saveState is called:

• Push the current backup onto a stack.
• Create a new current backup that is empty.

– When a stateful object is modified:
• Log the change in the current backup.

– When restoreState is called:
• Restore the content of the current backup.
• Pop the topmost backup from the stack.
• Restore the content of the popped backup into the

current backup.

‣This is a lazy backup: it can be seen as
“backup on write”.
‣Not so easy to parallelize the search

Trailer vs Copier

91

StateManager sm = new Trailer() // new Copier();
StateInt a = sm.makeStateInt(7);
StateInt b = sm.makeStateInt(13);
sm.saveState();

Stack<Backup> prior

Copier

a=7
StateEntry

Backup

b=13
StateEntry

Backup

Stack<Backup> prior

Trailer

Backup: current

Level 0

Trailer vs Copier

92

StateManager sm = new Trailer() // new Copier();
StateInt a = sm.makeStateInt(7);
StateInt b = sm.makeStateInt(13);
sm.saveState();
 a.setValue(6);
 a.setValue(11);

Stack<Backup> prior

Copier

a=7
StateEntry

Backup

b=13
StateEntry

Backup

Stack<Backup> prior

Trailer

a=7
StateEntry

Backup: current

Level 0

Level 1

Trailer vs Copier

93

StateManager sm = new Trailer() // new Copier();
StateInt a = sm.makeStateInt(7);
StateInt b = sm.makeStateInt(13);
sm.saveState();
 a.setValue(6);
 a.setValue(11);
 sm.saveState();

a=11
StateEntry

Backup

b=13
StateEntry

Stack<Backup> prior

Copier

a=7
StateEntry

Backup

b=13
StateEntry

Backup

a=7
StateEntry

Backup

Stack<Backup> prior

Trailer

Backup: current

Level 0

Level 1

Trailer vs Copier

94

StateManager sm = new Trailer() // new Copier();
StateInt a = sm.makeStateInt(7);
StateInt b = sm.makeStateInt(13);
sm.saveState();
 a.setValue(6);
 a.setValue(11);
 sm.saveState();
 a.setValue(4);
 b.setValue(9);

a=11
StateEntry

Backup

b=13
StateEntry

Stack<Backup> prior

Copier

a=7
StateEntry

Backup

b=13
StateEntry

Backup

a=7
StateEntry

Backup

Stack<Backup> prior

Trailer

a=11
StateEntry

Backup: current

b=13
StateEntry

Level 0

Level 1

Trailer vs Copier

95

StateManager sm = new Trailer() // new Copier();
StateInt a = sm.makeStateInt(7);
StateInt b = sm.makeStateInt(13);
sm.saveState();
 a.setValue(6);
 a.setValue(11);
 sm.saveState();
 a.setValue(4);
 b.setValue(9);
 sm.restoreState();

Stack<Backup> prior

Copier

a=7
StateEntry

Backup

b=13
StateEntry

Backup

Stack<Backup> prior

Trailer

Level 0

Level 1

a=7
StateEntry

Backup: current

Trailer vs Copier

96

StateManager sm = new Trailer() // new Copier();
StateInt a = sm.makeStateInt(7);
StateInt b = sm.makeStateInt(13);
sm.saveState();
 a.setValue(6);
 a.setValue(11);
 sm.saveState();
 a.setValue(4);
 b.setValue(9);
 sm.restoreState();
sm.restoreState();

Stack<Backup> prior

Copier

Stack<Backup> prior

Trailer

Backup: current

Level 0

Level 1

Two different strategies

97

‣Copier (eager / brute-force)
– When saveState is called:

• Copy all stateful objects into a backup.
• Push that backup onto a stack.

– When a stateful object is modified:
• Do nothing!

– When restoreState is called:
• Pop the topmost backup from the stack.
• Restore the content of the popped backup.

‣This is a eager or brute-force
backup, copy everything without
working about small changes
‣Easier to parallelize the search.

‣Trailer (incremental and lazy)
– When saveState is called:

• Push the current backup onto a stack.
• Create a new current backup that is empty.

– When a stateful object is modified:
• Log the change in the current backup.

– When restoreState is called:
• Restore the content of the current backup.
• Pop the topmost backup from the stack.
• Restore the content of the popped backup into the

current backup.

‣This is a lazy backup: it can be seen as
“backup on write”.
‣Not so easy to parallelize the search

Copier Doing a StateEntry Eager Backup

98

public class CopyInt extends Copy<Integer> implements StateInt {
 protected CopyInt(int initial) {
 super(initial);
 }
}

public class Copy<T> implements Storage, State<T> {
 class CopyStateEntry implements StateEntry {
 private final T v;
 CopyStateEntry(T v) { this.v = v;}
 @Override public void restore() { Copy.this.v = v;}
 }
 private T v;
 protected Copy(T initial) { v = initial;}
 public T setValue(T v) { return this.v = v;}
 public T value() { return v;}
 public String toString() { return String.valueOf(v);}
 public StateEntry save() { return new CopyStateEntry(v);}
}

Object used to record
a snapshot and

possibly restore its
content later

Copier StateManager

99

public class Copier implements StateManager {
 class Backup extends Stack<StateEntry> {
 private int sz;
 Backup() {
 sz = store.size();
 for (Storage s : store)
 add(s.save());
 }
 void restore() {
 store.setSize(sz);
 for (StateEntry se : this)
 se.restore();
 }
 }
 private Stack<Storage> store;
 private Stack<Backup> prior;
 public Copier() {
 store = new Stack<Storage>();
 prior = new Stack<Backup>();
 }
……
}

All the StateX objects to store upon “saveState”

A backup is a full snapshot
computed upon “saveState”
and pushed onto the stack

Copier StateManager

100

 public int getLevel() { return prior.size() - 1;}
 public int storeSize() { return store.size();}

 public void saveState() { prior.add(new Backup());}
 public void restoreState() { prior.pop().restore();}

 public void withNewState(Procedure body) {
 final int level = getLevel();
 saveState();
 body.call();
 restoreStateUntil(level);
 }
 public void restoreStateUntil(int level) {
 while (getLevel() > level)
 restoreState();
 }
 public StateInt makeStateInt(int initValue) {
 CopyInt s = new CopyInt(initValue);
 store.add(s);
 return s;
 }
}

public class Copier implements StateManager {
 class Backup extends Stack<StateEntry> {
 private int sz;
 Backup() {
 sz = store.size();
 for (Storage s : store)
 add(s.save());
 }
 void restore() {
 store.setSize(sz);
 for (StateEntry se : this)
 se.restore();
 }
 }
 private Stack<Storage> store;
 private Stack<Backup> prior;
 public Copier() {
 store = new Stack<Storage>();
 prior = new Stack<Backup>();
 }
……

}

Factory creation of “Copyable Int”

Copier: Complexity Analysis

101

‣When creating a state:
– Zero.

‣When saveState is called:
– Iterate over all stateful objects in order to back them up.
– Cost is O(# statefu| objects), in time and space.

‣When restoreState is called:
– Iterate over all entries in the popped backup.
– Cost is again O(# statefu| objects).

Two different strategies

102

‣Copier (eager / brute-force)
– When saveState is called:

• Copy all stateful objects into a backup.
• Push that backup onto a stack.

– When a stateful object is modified:
• Do nothing!

– When restoreState is called:
• Pop the topmost backup from the stack.
• Restore the content of the popped backup.

‣This is a eager or brute-force
backup, copy everything without
working about small changes
‣Easier to parallelize the search.

‣Trailer (incremental and lazy)
– When saveState is called:

• Push the current backup onto a stack.
• Create a new current backup that is empty.

– When a stateful object is modified:
• Log the change in the current backup.

– When restoreState is called:
• Restore the content of the current backup.
• Pop the topmost backup from the stack.
• Restore the content of the popped backup into the

current backup.

‣This is a lazy backup: it can be seen
as “backup on write”.
‣Not so easy to parallelize the search

Custom State Object

103

‣We need a “Stateful Int” object:
– that is created by the Trailer Factory;
– that lazily backs up to the state.

‣Bottomline:
– Programmers need never worry about how stateful objects are managed.

Implementation

104

public class Trailer implements StateManager {
 static class Backup extends Stack<StateEntry> {
 Backup() {}
 void restore() {
 for (StateEntry se : this)
 se.restore();
 }
 }

 private Stack<Backup> prior;

 private Backup current;

 private long magic = 0L;
 public Trailer() {
 prior = new Stack<Backup>();
 current = new Backup();
 }
 public long getMagic() { return magic;}
}

Lazy backup object

Stack of prior backups

Current lazy backup

Implementation

105

 public void pushState(StateEntry entry) { current.push(entry);}

 public int getLevel() { return prior.size() - 1;}
 public void saveState() {
 prior.add(current);
 current = new Backup();
 magic++;
 }

 public void restoreState() {
 current.restore();
 current = prior.pop();
 notifyRestore();
 }
 public void restoreStateUntil(int level) {
 while (getLevel() > level)
 restoreState();
 }
 public StateInt makeStateInt(int initValue) {
 return new TrailInt(this,initValue);}
}

Enter a change

Save the current lazy backup
and start a new one!

Undo all the changes in current lazy backup
and restore current to previous

Factory creation of “Trailable Int”

Doing a StateEntry Lazy Backup…

106

public class Trail<T> implements State<T> {
 class TrailStateEntry implements StateEntry {
 private final T v;
 TrailStateEntry(T v) { this.v = v;}
 public void restore() { Trail.this.v = v;}
 }
 private Trailer trail;
 private T v;
 private long lastMagic = -1L;
 protected Trail(Trailer trail, T initial) {
 this.trail = trail;v = initial;
 lastMagic = trail.getMagic() - 1;
 }
 private void trail() {
 long trailMagic = trail.getMagic();
 if (lastMagic != trailMagic) {
 lastMagic = trailMagic;
 trail.pushState(new TrailStateEntry(v));
 }
 }
 public T setValue(T v) {
 if (v != this.v) {
 trail();this.v = v;
 }
 return this.v;
 }
 public T value() { return this.v;}
}

Lazy backup logic

Constraint Programming
Data Structures with State: Sets, Stacks, etc.

A Stateful Set of Integers

108

‣SparseSet again…
– A set of integers:

• With a StateInt each for the size, minimum, and maximum.

‣Usage scenario, for the domain of a variable:
– Only remove values from the set.
– On backtrack, restore values into the set.

Revisiting SparseSet Operations…

109

‣Let’s visualize this!

StateManager sm;
StateSparseSet set = sm.makeSparseSet(9);
sm.saveState();
set.remove(4);

StateSparseSet

110

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

size

in the set

values

indices

All we need to change is that
size is now a StateInt.

StateManager sm;
StateSparseSet set = sm.makeSparseSet(9);
sm.saveState();
set.remove(4);
set.remove(6);

Removal Operation

0 1 2 3 8 5 6 7 4

0 1 2 3 8 5 6 7 4

0 1 2 3 4 5 6 7 8

size

values

indices

in the set removed

111

StateManager sm;
StateSparseSet set = sm.makeSparseSet(9);
sm.saveState();
set.remove(4);
set.remove(6);
sm.saveState();
set.removeAllBut(3);

Removal Operation

112

0 1 2 3 8 5 7 6 4

0 1 2 3 8 5 7 6 4

0 1 2 3 4 5 6 7 8

size

values

indices

in the set removed

StateManager sm;
StateSparseSet set = sm.makeSparseSet(9);
sm.saveState();
set.remove(4);
set.remove(6);
sm.saveState();
set.removeAllBut(3);
sm.restoreState(); // {0,1,2,3,5,7,8}

Removal Operation

113

3 1 2 0 8 5 7 6 4

3 1 2 0 8 5 7 6 4

0 1 2 3 4 5 6 7 8

size

values

indices

in removed

Removal Operation

114

Trailer trail = new Trailer();
ReversibleSparseSet set = trail.makeStateInt(9);
trail.push();
set.remove(4);
set.remove(6);
trail.push();
set.fix(3);
trail.pop(); // {0,1,2,3,5,7,8}

3 1 2 0 8 5 7 6 4

3 1 2 0 8 5 7 6 4

0 1 2 3 4 5 6 7 8

values

indices

in removedin removed

3 1 2 0 8 5 7 6 4

size

StateManager sm;
StateSparseSet set = sm.makeSparseSet(9);
sm.saveState();
set.remove(4);
set.remove(6);
sm.saveState();
set.removeAllBut(3);
sm.restoreState(); // {0,1,2,3,5,7,8}

Removal Operation

115

Trailer trail = new Trailer();
ReversibleSparseSet set = trail.makeStateInt(9);
trail.push();
set.remove(4);
set.remove(6);
trail.push();
set.fix(3);
trail.pop(); // {0,1,2,3,5,7,8}
trail.pop(); // {0..9}

3 1 2 0 8 5 7 6 4

3 1 2 0 8 5 7 6 4

0 1 2 3 4 5 6 7 8

values

indices

in removed

3 1 2 0 8 5 7 6 4

in

3 1 2 0 8 5 7 6 4

size

StateManager sm;
StateSparseSet set = sm.makeSparseSet(9);
sm.saveState();
set.remove(4);
set.remove(6);
sm.saveState();
set.removeAllBut(3);
sm.restoreState(); // {0,1,2,3,5,7,8}
sm.restoreState(); // {0..8}

Constraint Programming
Posting constraints during search  
= reversible operations

A Stateful Container

117

‣Another example of a “backtrack”-capable stateful object:
– A stack of objects:

• Only push objects onto the stack.
• On backtrack (restore), the pushed objects should disappear.

– Beware:
• That does not work for popping objects!

‣Usage scenario:
– Stacks of constraints held for a variable (e.g., onDomain):

• Only add constraints for the variable during the search.
• On backtrack, the constraints are removed.

The StateStack

118

‣Simple idea:
– Maintain an ArrayList.
– Maintain its size as a StateInt.
– API:

• Pushing adds at the end of the list and increases the size.
• We never pop.
• It pops automatically on backtrack!

Implementation

119

package minicp.state;
import java.util.ArrayList;
public class StateStack<E> {
 private StateInt size;
 private ArrayList<E> stack;

 public StateStack(StateManager sm) {
 size = sm.makeStateInt(0);
 stack = new ArrayList<E>();
 }

 public void push(E elem) {
 int s = size.value();
 if (stack.size() > s) stack.set(s, elem);
 else stack.add(elem);
 size.increment();
 }
 public int size() { return size.value();}
 public E get(int index) { return stack.get(index);}
}

Set up the state
Set up a StateInt @ 0

Update at the right offset
Update the size

Posting a Constraint is a Reversible Operation

120

sm.saveState()
cp.post(q[0]=0)

public class IntVarImpl implements IntVar {
 private Solver cp;
 private IntDomain domain;
 private StateStack<Constraint> onDomain;
 private StateStack<Constraint> onFix;
 private StateStack<Constraint> onBound;
}

Because the hook-up
mechanism is reversible.

sm.restoreState()

The constraint
 q[0]=0 is removed.

