Introduction to
Constraint Programming

Discrete Optimization is everywhere!

time

Fri

6 4 22
]
|

Wed Thu

€ 14 22 6 "4 22
| | | |

Tue
F 14 22

Mon

5 "4 22

Mon

6 4 2

Sat Sun
14 22 G 12 22
| | 1 |

Minimum consecutive frae days for Beth: 2 D

ay off wigh for Carla: Sunday

B ERERaE
7]?

1T|TTﬂT
117

2B 27772182 222]?]7]7]"
. S |

After a night shift sequence: 2 free cays
| ' o !

T
ddd - Baaa
I

Unwanted pattern: E-L-E
7 7 o '

ﬂﬁm

Discrete Optimization problems are messy i

> Pure TSP only exists in textbooks and student projects

.
<

> In practice you will have more than one venhicle,
dozens of constraints, and strange objective functions &

Constraint Programming

> |s a very good tool to solve messy discrete optimization problems

’Mini

Constraint Programming (CP)

“Constraint programming represents one of the closest approaches
computer science has yet made to the Holy Grail of programming:

the user states the problem, the computer solves it.” (E. Freuder)

States, you mean like this?

Not yet ... rather like this:

range R = 1..8;

var{int} g[R] in R;
solve {

forall(i in R, j in R: 1 < j) {
qli (3137

q[i] J] + (J - 1);
qli] J] - (J - 1);

}
}

but who knows in the future ;-)

’Mini

State Problem = Declarative Programming i

Declarative programming is a programming paradigm that expresses the logic
of a computation without describing its control flow.

Declarative programming for solving constrained combinatorial (optimization)
problems means that you express the properties of solutions that must be
found by “the solver”.

CP Slogan

CP = Model (+ Search)

The algorithmic part:

Model description:

user API for
declarative programming

finding a solution that
satisfies all the constraints, etc,

usually by exploring a search tree

’Mini

What will you learn?

1) How to build this

2) How to use this

Required skills

10

Sm—--

Java

C)

GitHub

’Mini

Organization and grading

Topics

» Gentle Introduction to CP

>

12

Outline

» The N-Queens Problem
> Three approaches
—DFS + Filter
—DFS + Prune
— (Tiny)CSP: make it generic and reusable:
 Variables, domains, constraints and DFS
— Declarative Paradigm
— Assignment: Graph Coloring
—What’s next

13

DFS + Filter

N-Queens Problem

> Place N queens on an NxN chessboard

so that no two queens threaten each other.
> Thus, a solution requires that no two queens

are on the same row, column, or diagonal.

15

éﬂ
L& |

!

£
>

M
HEEEEEEE

HEEERNER

éﬂ

-
-
-
-
-
o
-
-

HEEEEEECEE

HEEENCENE
HEEEEENE

b

<

HEEEEEEEE

A‘ﬂl INi

N-Queens: modeling considerations £

A boolean {True/False} for each cell, telling whether (T) or not (F) a queen is present

£
>

!

£
>

M
HEEEEEEE

HEEERNER

éﬂ

HEEEEEEN
HEEEREEN
HEEEENCEE

B
-
B
i
B
-
B
I

b

16

N-Queens: modeling considerations i

A boolean {True/False} for each cell, telling whether (T) or not (F) a queen is present

Drawback: Require to test the three types of constraints:
no two queens are on the same , , Or

'I'Ii'I'II'I'II'I'II—l 'r||-r||-r|

M |1m|m

17

N-Queens: modeling considerations i

An integer for each column {0,...,N-1}, telling on which row to place the queen of that column

ol L]
EEEEEEEE
HEEENEEEE

18

N-Queens: modeling considerations i

An integer for each column {0,...,N-1}, telling on which row to place the queen of that column

EEEEEEEE
EEEEEEEE
EEEEEEEE
HEENEEEE
EEEEEEEE

ol L]
EEEEEEEE
HEEENEEEE

19

N-Queens: modeling considerations i

An integer for each column {0,...,N-1}, telling on which row to place the queen of that column

EEE:EEEE
EEEEE NN
HEEREENE
HEENEEEE
EEEEENE N

EEEE
TET
T

20

N-Queens: modeling considerations i

Advantage: only two types of constraints: no two queens are on the same , , or diagonal.
B EELENEEN
6 \
5
L
2L 4 1
2 I L L L

................

Rl dEEEE

................

i i | v A
o LA I]]

..

21

Discovering all the solutions to a CSP

> et us make It generic

‘o g

Filter solutions,
which satisty all
the constraints

(GGenerate all
candidate solutions

22

Numbers of candidate solutions in our two models

23

................

"""""""""

................

................

88 — 224

TTERI T
TN EAD
TN
1IN N

N/ \
T AT

AL L]
A L]
EV4dEL BN

’Mini

Generate all the candidate solutions ... -

» Backtracking Depth-First Search (DFS)

public class NQueensChecker {

int [] q;
int n = 0;

public NQueensChecker(int n) {
this.n = n;
q = new int[n];

}
public void dfs() {
dfs(0);
}
private void dfs(int idx) {
if (1idx == n) {
// candidate solution
} else {
for (int 1 = 0; 1 < n; 1i++) {
q[idx] = 1;
dfs(idx+1);
}
}

}

24

... and filter them

» Backtracking Depth-First Search + Filter

public class NQueensChecker {

int [] q;
int n = 0;

. . public boolean constraintsSatisfied() {
publlc.NQueensChecker(lnt n) { | for (int i = 0; i < n; i++) {

this.n - Hi i for (int j = i+1l; J < n; j++) {

q = new int[n]; P // no two queens on the same row
¥ g if (g[i] == q[j]) return false;

. . ~ // no two queens on the same diagonal
pubIQESYS;? dfs() A _-f if (Math.abs(q[]j] - q[i1]) == J-1) {

! V4 return false;

} / }
private void dfs(int idx) { /) '

1f (;dxdff_p),{.,J.m,;,,m_i,i,,,_._ return true;
j (constraintsSatisfied()) {i

| elma [———————
for (int i =]
q[idx] = i
dfs(idx+1);

Notice that this approach is quite generic.
You just need a method (could be made

abstract) to check the constraints.

25

’Lﬁni

"Hollywood Principle: Don't call us, we'll call you™

public static void main(String[] args) {
NQueensChecker g = new NQueensChecker(8);
ArrayList<int []> solutions = new ArrayList<>();

q.dfs(0, solution -> solutions.add(solution));

import java.util.function.Consumer;
public class NQueensChecker {

int [] q;
int n = 0;

public NQueensChecker(int n) {
this.n = n;
q = new int[n];

}

public void dfs(Consumer<int []> onSolution) {

dts(0, onSolution); @FunctionalInterface
; public interface Consumer<T> {
void accept(T t);

private void dfs(int idx, Consumer<int []> onSolution) { o
if (idx == n) { <l ;
if (constraintsSatisfied()) {
onSolution.accept(Arrays.copyOf(q,n));

}
} else {

for (int i = 0; i < n; i++)
gq[idx] = 1;
dfs(idx+1, onSolution);

’Lﬂni

Demo

27

’Mini

DFS + Prune

Principle

> DFS + Filter: only check constraints when all the decisions are made

> DFS + Prune: check constraints on a prefix of decisions (partial solution)

. O 0 0 0
: N

29

’Mini

| DFS + Prune

public class NQueensPrune { public boolean constraintsSatisfied(int j) {
for (int 1 = 0; 1 < j; i++) {
// no two queens on the same row
if (g[i] == q[]J]) return false;
// no two queens on the same diagonal
if (Math.abs(q[j] - q[i]) == j - i) {
public NQueensPrune(int n) { return false;
this.n = n; }
q = new int[n]; }
} return true;

O O O O O

public void dfs(Consumer<int []> onSolution) {
dfs (0, onSolution);

}

private void dfs(int idx, Consumer<int []> onSolution) {
if (idx == n) {
onSolution.accept(Arrays.copyOf(q, n));
} else {
for (int 1 = 0; 1 < n; i++) {
q[idx] = 1i;
if (constraintsSatisfied(idx))
dfs(idx+1, onSolution);

Drawback of DFS + Prune £

» Search per level

— The backtracking works with only one index,
decisions

> Only one set of decision variables

> Only one inference, hardcoded and problem-specific, and none of the code is
reusable for solving another problem, even quite similar (let’s say Sudoku)

> Our next approach targets genericity and reusability of ingredients

1182
|

, because you overwrite previous

31

TinyCSP Model

N-Queens: Model with TinyCSP

int n = 8;
TinyCSP csp = new TinyCSP();
Variable[] g = new Variable[n];

for (int 1 = 0; 1 < n; 1i++) {
qg[i] = csp.makeVariable(n);

}

for (int 1 = 0; 1 < n; 1++) {

for (int j = i+l; j < n; Jj++) {
// queens 1 and j not on

csp.notEqual(qgq[i],q[J]1,0); [/ ..
csp.notEqual(q[i],ql[]jl,i-3);: // ...
csp.notEqual(q[i],ql[]jl,j-1); // ...

}

the same row
the same left diagonal
the same right diagonal

ArrayList<int []> solutions = new ArrayList<>();

// collect all the solutions

csp.dfs(solution -> {
solutions.add(solution);

});

Let’s make this work ...

33

Variables

Constraints

Search

1&mi

N-Queens: Model with TinyCSP

> Representation = a model:

— Holds an array of integer variables
with one variable per column.

int n = 8;
TinyCSP csp = new TinyCSP();
Variable[] g = new Variable[n];

for (int 1 = 0; 1 < n; 1i++) {

g[1] = csp.makeVariable(n);

}

34

N-Queens: Model with TinyCSP

> Representation = a model:

— Holds an array of integer variables
with one variable per column.

int n = 8;
TinyCSP csp = new TinyCSP();
Variable[] g = new Variable[n];

for (int 1 = 0; 1 < n; 1i++) {

g[1] = csp.makeVariable(n);

}

35

=S LU

g[] = Variables

N-Queens: Model with TinyCSP

> Representation = a model:

— Holds an array of integer variables
with one variable per column.

int n = 8;
TinyCSP csp = new TinyCSP();
Variable[] g = new Variable[n];

for (int 1 = 0; 1 < n; 1i++) {

g[1] = csp.makeVariable(n);

}

36

=S LU

g[] = Variables

N-Queens: Model with TinyCSP

» Representation = a model:

— Holds an array of integer variables
with one variable per column.

int n = 8;
TinyCSP csp = new TinyCSP();
Variable[] g = new Variable[n];

for (int 1 = 0; 1 < n; 1++) {

g[1i] = csp.makeVariable(n);

}

— Cannot be on the same column...

for (int i = 0; i < n; i++) {
for (int j = i+1l; j < n; Jj++) {

37

t&mi

N-Queens: Model with TinyCSP

> Representation = a model:

— Holds an array of integer variables
with one variable per column

int n = 10;
TinyCSP csp = new TinyCSP();
Variable[] g = new Variable[n];

for (int 1 = 0; 1 < n; 1++) {
g[1i] = csp.makeVariable(n);

}

— Cannot be on the same row...

for (int 1 = 0; 1 < n; 1i++) {
for (int j = i+l; j < n; Jj++) {
// queens 1 and j not on same ...
csp.notEqual(q[i],q[j]1,0); // row

38

’Mini

N-Queens: Model with TinyCSP

> Representation = a model:

— Holds an array of integer variables
with one variable per column.

int n = 10;
TinyCSP csp = new TinyCSP();
Variable[] g = new Variable[n];

for (int 1 = 0; 1 < n; 1i++) {
g[1i] = csp.makeVariable(n);

}

— Cannot be on the same diagonal...

for (int 1 = 0; 1 < n; 1i++) {
for (int j = i+l1l; j < n; j++) {
// queens 1 and j not on same ..
csp.notEqual(q[i],q[j]1,0); // row
csp.notEqual(q[i],qljl,i-]); // left diagonal

39

1&mi

N-Queens: Model with TinyCSP

» Representation = a model:

— Holds an array of integer variables
with one variable per column.

int n = 10;
TinyCSP csp = new TinyCSP();
Variable[] g = new Variable[n];

for (int 1 = 0; 1 < n; 1i++) {
g[1i] = csp.makeVariable(n);

}

— Cannot be on the same diagonals...

for (int 1 = 0; 1 < n; 1i++) {
for (int j = i+l1l; j < n; j++) {
// queens 1 and j not on same ..
csp.notEqual(q[i],q[j]1,0); // row
csp.notEqual(q[i],qljl,i-]); // left diagonal
csp.notEqual(qg[i],q[J]l,J-1); // right diagonal
}

}

40

TInyCSP
Computation

Computational Paradigm

Constraint

Store @

Search e\\

Constraint

oi ©

Domain
Store

-0

42

’Mini

Computational Paradigm o

The propagation engine:
— This Is the core of any constraint-programming solver.
— It is a simple fixpoint algorithm:

fixPoint ()
{
repeat
select a constraint c;
if c¢c 1s infeasible given the domain store then
return failure;
else
apply the pruning algorithm associated with c;
until no constraint can remove any value from the domains of its wvariables;
return success;

43

Computational Paradigm

44

Search

X[0]=0

X[1]=2

Success

Failure

Constraint
Store

TinyCSP class

public class TinyCSP {

Constraint Store

abstract class Constraint {

J **
List<Constraint> constraints = new LinkedList<>(); * Propagate the constraint and return
List<Variable> variables = new LinkedList<>(); * true 1f any value could be removed
* @return true if at least one value of one
public Variable makeVariable(int domSize) { * variable could be removed
Variable x = new Variable(domSize); * /
variables.add(x); abstract boolean propagate();
return Xx; }
}
public void notEqual(Variable x, Variable y, int offset) { public class Variable {
constraints.add(new NotEqual(x, y, offset));
fixPoint(); Domain dom;
}
J**
public void fixPoint() * Creates a variable with domain {0..n-1}
boolean fix = false; public Variable(int n) {
while (!fix) { dom = new Domain(n);
fix = true; }
for (Constraint c : constraints) { }
fix &= !c.propagate();
}
}
}

45

‘&mi

What does a constraint do? -

> Feasibility checking:
— Can the constraint be satisfied given the values in the domains of its variables?
> Pruning:

— |f satisfiable (= feasible), then a constraint removes values (from the domains
of its variables) that cannot be part of any solution.

46

The NotEqual Constraint x =y + offset

class NotEqual extends Constraint {

Variable x, v;
int offset;

public NotEqual(Variable x, Variable y, int offset)
this.x = x;
this.y = y;
this.offset = offset;

}

public NotEqual (Variable x, Variable y) {
this(x, y, 0);

}

@Override

boolean propagate() {
if (x.dom.isFixed()) {
return y.dom.remove(x.dom.min() - offset);

}
if (y.dom.isFixed()) {

return x.dom.remove(y.dom.min() + offset);

}

return false;

47

{

‘&mi

State Management

>»\When a value I1s removed it needs to be restored on backtrack

> TinyCSP uses a “backup” mechanism of the domains
X

D(X)| D(X)

1: clone D(X)

48

State Management

>»\When a value I1s removed it needs to be restored on backtrack

> TinyCSP uses a “backup” mechanism of the domains
X

D(X)| D(X)

2: branch, for instance y=2

49

State Management

>»\When a value is removed it needs to be restored on backtrack
> TinyCSP uses a “backup” mechanism of the domains

D(X)

3: fixpoint; D(X) may be modified

50

State Management

>»\When a value I1s removed it needs to be restored on backtrack

> TinyCSP uses a “backup” mechanism of the domains
X

D(X)
b

4: backtrack

51

State Management £

>»\When a value is removed it needs to be restored on backtrack
> TinyCSP uses a “backup” mechanism of the domains

public class Variable { Jx(
Domain dom; D(X)
public Variable(int n) { p
) dom = new bomain(n); 5: restore the cloned domain

}

private void restoreDomains(ArrayList<Domain> backup) {
for (int 1 = 0; 1 < variables.size(); 1it++) {
variables.get(1i).dom = backup.get(1i);

}

52

DFS

public void dfs(Consumer<int[]>

onSolution) {

// pick a variable that is not yet fixed, 1f any

Optional<Variable> notFixed
if (!notFixed.isPresent())

int[] solution = variables.stream().mapToInt(x -> xX.dom.min()).toArray();

= firstNotFixed();
{ // all variables fixed, a solution is found

onSolution.accept(solution);

} else {

Variable y = notFixed.get(); // take the unfixed variable

int v = y.dom.min();

ArrayList<Domain> backup = backupDomains(); :
// left branch y = v Clone dOmalnS

try {
y.dom.fix(v);
fixPoint();
dfs(onSolution);

Branch (left) and Fixpoint

} catch (Inconsistency 1)

}

restoreDomains (backup);
// right branch y != v
try {
y.dom.remove (V) ;
fixPoint();
dfs(onSolution);

Restore domains

Branch (right) and Fixpoint

} catch (Inconsistency 1) {

}

53

‘&Mi

Domain implementation: java.util.BitSet

public class Domain {

private BitSet values;

public Domain(int n) { private Domain(BitSet dom) {
values = new BitSet(n); this.values = dom;
values.set (0, n); }

}

public boolean isFixed() { size() == 1; }

public int size() { return values.cardinality(); }

public int min() { return values.nextSetBit(0); }

public boolean remove(int v) {
if (0 <= v && v < values.length()) {

if (values.get(v)) {
values.clear(v);
if (size() == 0) throw new TinyCSP.Inconsistency():;

return true;

}
}

return false;

}

public void fix(int v) {
if (!values.get(v)) throw new TinyCSP.Inconsistency();
values.clear();
values.set(v);

}
public Domain clone() {

return new Domain((BitSet) values.clone());
}

54

’Lﬁni

Performance G

What to measure? -

> The number of nodes (recursive calls)
> The time

> Let’'s compare the three approaches
— NQueensChecker (generate and filter)

— NQueensPrune (prune the search when violation detected on prefix of decisions)
— NQueensTinyTSP (use the TinyCSP solver)

56

NQueensChecker

19,173,901

435,848,050

11,111,111,111

S7

4,526

101,497

#solutions

352

724

’Mini

NQueensPrune

58

856,189

4,674,890

27,358,503

171,129,072

690

4,500

30,138

#solutions

73,712

365,596

2,279,184

’Mini

NQueensTinyCSP

59

102,531

73,712

2,934,559

17,543,700

11,999

72,753

477,324

#solutions

73,712

365,596

2,279,184

’Mini

Where do we lose time in NQueensTinyCSP?

> Profiler (Visual VM https://visualvm.qgithub.io)

60

’ Heap ‘ Metaspace

Size: 545,259,552 B

Max: 8,589,934,616 8B

500 MB+
450 MB+
400 MB+
350 MB+
300 MB+
250 MB+

200 MB+

150 MB

100 MB+

50 MB+

0 MB-

|

(i

1001:00 AM

10:01:30 AM

| |

10:02:00 AM

Used: 358,276,224 B

10:02:30 AM

10:03:00 AM

10:03:30 AM 10:04:00 AM

M Heap size M Used heap

Name

(O tinycsp.examples.NQueensTinyCSP.main ()
(2 tinycsp.TinyCSP.dfs ()

(5 tinycsp.TinyCSP.fixPoint ()

(5 tinycsp.TinyCSPSInconsistency. <init> ()

(9 tinycsp.Domain.fix ()

(5 tinycsp.NotEqual.propagate ()

(5 tinycsp.Domain.size ()

(2 tinycsp.Domain.isFixed ()

(5 tinycsp.TinyCSP.backupDomains ()

(& tinycsp.TinyCSP.restoreDomains ()

(2 tinycsp.Domain.remove ()

(5 tinycsp.TinyCSP.firstNotFixed ()

(tinycsp.TinyCSP.lambda$ firstNotFixed$0 ()
(2 tinycsp.TinyCSPS$Lambda$17.0x0000000800c03458.test ()

Total Time (CPU)
152,296 ms
152,296 ms

67,361 ms
59,579 ms
53,956 ms
48,920 ms
41,484 ms
41,381 ms
16,493 ms
9,710 ms
8,032 ms
1,591 ms
493 ms
493 ms

(23.
(23.

(10.:
(9.

’ s
(.47
- ’
\

(7.
(6.
(6.3
(2.
(1.5%
(1.
(0.
(0.
(0.

1%)
1%)

Total Time
152,296 ms
152,296 ms

67,361 ms
59,579 ms
53,956 ms
48,920 ms
41,484 ms
41,381 ms
16,493 ms
9,710 ms
8,032 ms
1,591 ms
493 ms
493 ms

’Mini

(23.
(23.

(10.:
(9.1
(8.2
(7.5
(6.
(6.3
(2.5
(1.
(1.
(0.
(0.
(0.

e
p—

Vi U1 W W U N
=

2 N N
o - \
&S S &
=

'.) o 74 "
L /0'

2 %)
1%)
1%)

https://visualvm.github.io

One source of inefficiency: The Fixpoint Algorithm i

— Data: The CSP (X, DY, C)
fixPoint () R . : :
{ esult: The greatest fixpoint domain
repeat pruningN eeded < true
select a constraint c; D DO
i1f ¢ 1s i1infeasible given the domain store then . ,
return failure: while pruningNeeded do
else DP < fc(D)
apply the pruning algorithm associated with c; prum’n Needed < DP # D
until no constraint can remove any value; g
return success; D <« DP
end

If no domain of a variable of the constraint c was changed since last time it was
executed, then is it worth executing it again?

61

Improved Fixpoint Algorithm: Data-Driven Lo

> The first algorithm is “naive”:
—Itinvokes & . on every constraint c of C all the time.
> We can make this far better!

62

Data: a CSP (X, D", C)
Result: the greatest fixpoint of the filtering
algorithms for the constraints in C, starting
from the domains D" of the variables of X
Q<+ C
D < DY
while |Q| > 0 do
¢ < dequeue(Q)
D'+ F.D)
V < {x € Vars(c) : D'(z) # D(x)}
if |V| > 0 then
enqueue(Q, {¢’ € C': [Vars(c') N V| > 0})
D+ D’

Only enqueue the constraints
with some domain change in
their scope (including c itself)!

In next module, design an efficient CP solver -

1. More fined-grained mechanism for the fixpoint and constraint propagation

2. Avoid creating “clones” of the domains and use memory efficient data-
structure to restore domains without creating objects

3. Implement a generic and flexible search that can easily be used for
complex branching decisions and complex ordering heuristics

63

CP and Declarative
Programming

Computational Paradigm of CP o

» Complete method, not a heuristic, because a search-tree exploration:
— Given enough time, it will find a / all solution(s) to a satisfaction problem.
— Given enough time, it will find an optimal solution to an optimization problem.

> Focus on feasibility: w0 /7 \efor-o
—How to use constraints to prune the n
search space by removing domain values .
that cannot belong to any solution? 0 A= o) or

00O

> Focus on reusability: sz/ \(W
— Can model many different problems with just one solver °

65

> Focus on reusabillity:
— Can model many different problems with just one solver

66

’Mini

Constraint Programming (CP)

“Constraint programming represents one of the closest approaches
computer science has yet made to the Holy Grail of programming:

the user states the problem, the computer solves it.” (E. Freuder)

States, you mean like this?

Not yet ... rather like this:

range R = 1..8;

var{int} g[R] in R;
solve {

forall(i in R, j in R: 1 < j) {
qli (3137

q[i] J] + (J - 1);
qli] J] - (J - 1);

}
}

but who knows in the future ;-)
67

’Mini

State Problem = Declarative Programming i

Declarative programming is a programming paradigm that expresses the logic
of a computation without describing its control flow.

Declarative programming for solving constrained combinatorial (optimization)
problems means that you express the properties of solutions that must be
found by “the solver”.

68

CP Slogan

CP = Model (+ Search)

The algorithmic part:

Model description:

user API for
declarative programming

finding a solution that
satisfies all the constraints, etc,

usually by exploring a search tree

69

’Mini

Moadel fin

A model of a constraint satisfaction problem has:

— Variables with sets of possible values, called domains:
* Generally integer sets or integer intervals, such as x € {5,9,10}, but also on floats, graphs, etc.

— Constraints on the variables:

e Arithmetic ex:3x+ 10y =2z (linear constraints are a special case!)
* Logical EX: X<y Or X>2Z (predicate logic)
 Combinatorial ex: Circuit(xs,...,Xn) (structural requirements)

70

Variables: Example £

» Variable = a decision that should be made.
> Domain = finite set of possible values for the variable.

> Example:
— X; = the city to visit after city /in a tour for the traveling salesperson (TSP);
—D(x) ={0,1,...,i—1,i+1,...,n—1}, where n = #cities: all the possible values for xi.

.

/1

Constraints: Examples

’Mini

Arithmetic

Sum(x[],y) = (zxi) =Yy

Logical

yy=coy.=1

72

Combinatorial

AllDifferent(x]])

Application Domains

Scheduling

Rostering

Mon

6 4 2

Sat Sun

€ 14 2 6 12 22
| | | | |

Fri
6 4 22
|

|

Wed Thu

€ 14 22 © 4 22
| | | |

Tue
F 14 22

| |
1 1
| Maximum consecutive working days fer Ann: &

4
time

Day off wigh for Carla: Sunday
.

'T11111” 1|1111]1111|T_“111]
2 %1771 2lzlzlzlz]z]z]zz]2 @ 2] 7] 7))
I — T

1

'11'111'111111'111 1110111717171
'??D??D?'?"?'?D????E?"?"?"E?E?
N F E L E

/3

’Mini

A Combinatorial Constraint for Jobshop? fo

Yes!
— Disjunctive(...)

D(start[i]) = {0,...,H}
end(i] = start[i] + duration[i]

time

74

TSP Modeling: CP vs MIP

minimizez di; - X;;
l,]

minimize a di,succ[i]
ic

subjectto) x; =2 VieV | o
subject to Circuit(succ)

ev
Y x;<IS|-1 VSCV.S+#¢
i, jES, i
X;; € {0,1}

succli] € {0,...,i—1,i+1,n—1}

succ[2]=0 4/@

succ[3]=2

succ[1]=3

succ[0]=4 dO,Succ[O]

5 \ ‘A succl4]=1

index an array with variables!

’Mini

Graph Coloring
Project

Coloring a Map/Graph £

> Specification:
— Color a map/graph so that no two adjacent territories/vertices have the same color.

> The 4 Color Theorem:

— Every map can be colored with just 4 colors.
— Proven by Kenneth Appel and Wolfgang Haken.
— First major theorem proven with a computer.

T =

al
o

5

\e

’ -
- .

77

Coloring a Graph £

> How to color a graph with constraint programming?
— Choose the variables.
— EXxpress the constraints in terms of the variables.

» \What are the variables?
» \What are the domains of the variables?

>» How to express the constraints?
— State that two adjacent vertices cannot be given the same color.

/8

What you need to implement

> Looking for the first solution (not all of them)!

public static class GraphColoringInstance {

public final int n; (a,b) encoded as [a,b]

public final List<int []> edges;
public final int maxColor;

public GraphColoringInstance(int n, List<int []> edges, int maxColor) {
this.n = n;
this.edges = edges;

this.maxColor = maxColor;

J**
* Solve the graph coloring problem
* @param instance a graph coloring instance
* @return the color of each node such that no two adjacent node receive a same color,
* or null if the problem is unfeasible

*/

public static int[] solve(GraphColoringInstance instance) {
// TODO: solve the graph coloring problem using TinyCSP and return a solution
// Hint: you can stop the search on first solution throwing and catching a exception
// in the onSolution closure or you can modify the dfs search

79

‘&Hﬂ

Tests

30

minicp-solution src test ava tinycsp examples & GrapaColoringT nyCSF

¥ Project

F Pull Requests

>

Projest v DI+ & -
a minicp-solution [minicp] ~/Documents/ideaSclvers/minicp-solutior
circleci
github
idea
? data
v docker
= Dockerfile
v docs
ampry
> orcject

v Vv

v

5IC
v maln
v java

v

minicp
v linycsg
v examnles
€ GraphColoringTinyCSP
& NQueensChecker
€ NQueensPrune
€ NQueensTinyCSP
€' Constraint
< Domein
€ NotEquzl
2 packagce- nfo.java
€ TinyCSP
€ Variable
v test
java
? minicp
v tinycsp
v examoles

GraphColoringTinyCSPTest

> target
> userguide
o .gitignare

.1checkstyle.properties
« checkstyle.xml
commrit-minicp.sh
71 pom.xml
o README.md
= requirements.txt
I'h Externel L braries
© Scratches and Consoles

GraphColoringTinyCSP

GraphColoringTinyCSPTest

Heuristics

Variable Heuristic Principle

82

First-fail for variable selection:

Since all variables must eventually be fixed,
iIf there are no solutions under a node (failure), then we prefer to detect this as soon as possible,

so that not too much time is spent exploring the subtree under the node.

How to choose X?

VY

Aﬂini

Different implementations of first-fail principle

» Select a variable with the smallest domain
» Select a variable involved in most constraints
> ... (more to come in future lectures)

83

Variable Heuristic £

public void dfs(Consumer<int[]> onSolution) {

// pick a variable that is not yet fixed, if any

Optional<Variable> notFixed = firstNotFixed();

if (!notFixed.isPresent()) { // all variables fixed, a solution is found
int[] solution = variables.stream().mapToInt(x -> x.dom.min()).toArray();
onSolution.accept(solution);

} else {
Variable y = notFixed.get(); // take the unfixed variable

int v = y.dom.min(); Optional<Variable> firstNotFixed() {

ArrayList<Domain> backup = backupDomains(); return variables.stream().filter(x -> !x.dom.isFixed()).findFirst();
// left branch y = v }
try {

y.dom.fix(Vv);

fixPolint(); Optional<Variable> smallestNotFixed() {
dfs(onSolution); int min = Integer.MAX VALUE;

} catch (Inconsistency 1) { Variable y = null;

} for (Variable x : wvariables) {

restoreDomains (backup) ; if (!x.dom.isFixed() && xX.dom.size() < min) {
. = X;

// right branch y != v zlin - y.dom.size();

try { }
y.dom.remove (V) ; }

fixPoint(); return y == null ? Optional.empty() : Optional.of(y);

dfs(onSolution);
} catch (Inconsistency 1) {

}

restoreDomains (backup) ;

