
Introduction to
Constraint Programming

Discrete Optimization is everywhere!

2

time

Scheduling

Routing

Rostering

Discrete Optimization problems are messy

3

‣Pure TSP only exists in textbooks and student projects

‣ In practice you will have more than one vehicle, 
dozens of constraints, and strange objective functions 🤪

Constraint Programming

4

‣ Is a very good tool to solve messy discrete optimization problems

Constraint Programming (CP)

5

“Constraint programming represents one of the closest approaches
computer science has yet made to the Holy Grail of programming:
the user states the problem, the computer solves it.” (E. Freuder)

States, you mean like this?

Not yet … rather like this:
range R = 1..8;
var{int} q[R] in R;
solve {
 forall(i in R, j in R: i < j) {
 q[i] ≠ q[j];
 q[i] ≠ q[j] + (j - i);
 q[i] ≠ q[j] - (j - i);
 }
}

but who knows in the future ;-)

State Problem = Declarative Programming

6

Declarative programming is a programming paradigm that expresses the logic
of a computation without describing its control flow.

Declarative programming for solving constrained combinatorial (optimization)
problems means that you express the properties of solutions that must be
found by “the solver”.

CP Slogan

7

CP = Model (+ Search)

Model description:
user API for 
declarative programming

The algorithmic part:
finding a solution that 
satisfies all the constraints, etc,
usually by exploring a search tree

What will you learn?

1) How to build this 2) How to use this

Required skills

10

Organization and grading

Topics

12

‣Gentle Introduction to CP
‣

Outline

13

‣The N-Queens Problem
‣Three approaches

– DFS + Filter
– DFS + Prune
– (Tiny)CSP: make it generic and reusable:
• Variables, domains, constraints and DFS

– Declarative Paradigm
– Assignment: Graph Coloring
– What’s next

DFS + Filter

N-Queens Problem

15

‣Place N queens on an N×N chessboard  
so that no two queens threaten each other.
‣Thus, a solution requires that no two queens 

are on the same row, column, or diagonal.

✅ ❌

N-Queens: modeling considerations

16

A boolean {True/False} for each cell, telling whether (T) or not (F) a queen is present

F F F T F F F F
F F F F F T F F
F F F F F F F T
F T F F F F F F
F F F F F F T F
T F F F F F F F
F F T F F F F F
F F F F T F F F

F F F T F F F F
F F F F F T F F
F F F F F F F T
F T F F F F F F
F F F F F F T F
T F F F F F F F
F F T F F F F F
F F F F T F F F

N-Queens: modeling considerations

17

A boolean {True/False} for each cell, telling whether (T) or not (F) a queen is present
Drawback: Require to test the three types of constraints: 
no two queens are on the same row, column, or diagonal.

N-Queens: modeling considerations

18

An integer for each column {0,…,N-1}, telling on which row to place the queen of that column

2 ? ? ? ? ? ? ?

7
6
5
4
3
2
1
0

Decisions =

N-Queens: modeling considerations

19

An integer for each column {0,…,N-1}, telling on which row to place the queen of that column

2 4 ? ? ? ? ? ?
?

7
6
5
4
3
2
1
0

Decisions =

N-Queens: modeling considerations

20

An integer for each column {0,…,N-1}, telling on which row to place the queen of that column

2 4 1 7 0 6 3 5

7
6
5
4
3
2
1
0

Decisions =

N-Queens: modeling considerations

21

Advantage: only two types of constraints: no two queens are on the same row, column, or diagonal.

2 4 1 7 0 6 3 5

7
6
5
4
3
2
1
0

Decisions =

Discovering all the solutions to a CSP

22

‣Let us make it generic

Generate all  
candidate solutions

Filter solutions, 
which satisfy all  
the constraints

Numbers of candidate solutions in our two models

23

264 88 = 224

2 4 1 7 0 6 3 5

7
6
5
4
3
2
1
0

Decisions =

F F F T F F F F
F F F F F T F F
F F F F F F F T
F T F F F F F F
F F F F F F T F
T F F F F F F F
F F T F F F F F
F F F F T F F F

Generate all the candidate solutions …

24

‣Backtracking Depth-First Search (DFS)
public class NQueensChecker {

 int [] q;
 int n = 0;

 public NQueensChecker(int n) {
 this.n = n;
 q = new int[n];
 }

 public void dfs() {
 dfs(0);
 }

 private void dfs(int idx) {
 if (idx == n) {
 // candidate solution
 } else {
 for (int i = 0; i < n; i++) {
 q[idx] = i;
 dfs(idx+1);
 }
 }
 }

}

… and filter them

25

‣Backtracking Depth-First Search + Filter
public class NQueensChecker {

 int [] q;
 int n = 0;

 public NQueensChecker(int n) {
 this.n = n;
 q = new int[n];
 }

 public void dfs() {
 dfs(0);
 }

 private void dfs(int idx) {
 if (idx == n) {
 if (constraintsSatisfied()) {
 // output solution
 }
 } else {
 for (int i = 0; i < n; i++) {
 q[idx] = i;
 dfs(idx+1);
 }
 }
 }

}

public boolean constraintsSatisfied() {
 for (int i = 0; i < n; i++) {
 for (int j = i+1; j < n; j++) {
 // no two queens on the same row
 if (q[i] == q[j]) return false;
 // no two queens on the same diagonal
 if (Math.abs(q[j] - q[i]) == j-i) {
 return false;
 }
 }
 }
 return true;
}

Notice that this approach is quite generic.
You just need a method (could be made
abstract) to check the constraints. ✅

 "Hollywood Principle: Don't call us, we'll call you"

26

public static void main(String[] args) {
 NQueensChecker q = new NQueensChecker(8);
 ArrayList<int []> solutions = new ArrayList<>();

 q.dfs(0, solution -> solutions.add(solution));
}

import java.util.function.Consumer;

public class NQueensChecker {

 int [] q;
 int n = 0;

 public NQueensChecker(int n) {
 this.n = n;
 q = new int[n];
 }

 public void dfs(Consumer<int []> onSolution) {
 dfs(0, onSolution);
 }

 private void dfs(int idx, Consumer<int []> onSolution) {
 if (idx == n) {
 if (constraintsSatisfied()) {
 onSolution.accept(Arrays.copyOf(q,n));
 }
 } else {
 for (int i = 0; i < n; i++) {
 q[idx] = i;
 dfs(idx+1, onSolution);
 }
 }
 }
}

@FunctionalInterface
public interface Consumer<T> {
 void accept(T t);
}

Demo

27

DFS + Prune

‣DFS + Filter: only check constraints when all the decisions are made

‣DFS + Prune: check constraints on a prefix of decisions (partial solution)

Principle

29

✅✅ ❌ ❌ ✅ ❌

✅✅ ✅

❌

❌

❌

q[0]
q[1]
q[2]
q[3]
…

DFS + Prune

30

public class NQueensPrune {

 int [] q;
 int n = 0;

 public NQueensPrune(int n) {
 this.n = n;
 q = new int[n];
 }

 public void dfs(Consumer<int []> onSolution) {
 dfs(0, onSolution);
 }

 private void dfs(int idx, Consumer<int []> onSolution) {
 if (idx == n) {
 onSolution.accept(Arrays.copyOf(q, n));
 } else {
 for (int i = 0; i < n; i++) {
 q[idx] = i;
 if (constraintsSatisfied(idx))
 dfs(idx+1, onSolution);
 }
 }
 }

}

❌

q[0]
q[1]
q[2]
q[3]

…

q[]
0

q[4]

1
2
3
4
5
6
7

0 2 4 6 5

 public boolean constraintsSatisfied(int j) {
 for (int i = 0; i < j; i++) {
 // no two queens on the same row
 if (q[i] == q[j]) return false;
 // no two queens on the same diagonal
 if (Math.abs(q[j] - q[i]) == j - i) {
 return false;
 }
 }
 return true;
 }

Drawback of DFS + Prune

31

‣Search per level
– The backtracking works with only one index, “i”, because you overwrite previous

decisions

‣Only one set of decision variables
‣Only one inference, hardcoded and problem-specific, and none of the code is

reusable for solving another problem, even quite similar (let’s say Sudoku)
‣Our next approach targets genericity and reusability of ingredients

TinyCSP Model

N-Queens: Model with TinyCSP

33

int n = 8;
TinyCSP csp = new TinyCSP();
Variable[] q = new Variable[n];

for (int i = 0; i < n; i++) {
 q[i] = csp.makeVariable(n);
}

for (int i = 0; i < n; i++) {
 for (int j = i+1; j < n; j++) {
 // queens i and j not on ...
 csp.notEqual(q[i],q[j],0); // ... the same row
 csp.notEqual(q[i],q[j],i-j); // ... the same left diagonal
 csp.notEqual(q[i],q[j],j-i); // ... the same right diagonal
 }
}

ArrayList<int []> solutions = new ArrayList<>();
// collect all the solutions
csp.dfs(solution -> {
 solutions.add(solution);
});

Variables

Constraints

Search

Let’s make this work …

‣Representation = a model:
– Holds an array of integer variables

with one variable per column.

N-Queens: Model with TinyCSP

34

int n = 8;
TinyCSP csp = new TinyCSP();
Variable[] q = new Variable[n];

for (int i = 0; i < n; i++) {
 q[i] = csp.makeVariable(n);
}

‣Representation = a model:
– Holds an array of integer variables

with one variable per column.

N-Queens: Model with TinyCSP

35

q[] = Variables

int n = 8;
TinyCSP csp = new TinyCSP();
Variable[] q = new Variable[n];

for (int i = 0; i < n; i++) {
 q[i] = csp.makeVariable(n);
}

‣Representation = a model:
– Holds an array of integer variables

with one variable per column.

N-Queens: Model with TinyCSP

36

Domains
D ⊆ ℤ

int n = 8;
TinyCSP csp = new TinyCSP();
Variable[] q = new Variable[n];

for (int i = 0; i < n; i++) {
 q[i] = csp.makeVariable(n);
}

q[] = Variables

‣Representation = a model:
– Holds an array of integer variables

with one variable per column.

– Cannot be on the same column…

N-Queens: Model with TinyCSP

37

int n = 8;
TinyCSP csp = new TinyCSP();
Variable[] q = new Variable[n];

for (int i = 0; i < n; i++) {
 q[i] = csp.makeVariable(n);
}

for (int i = 0; i < n; i++) {
 for (int j = i+1; j < n; j++) {

 }
}

‣Representation = a model:
– Holds an array of integer variables

with one variable per column

– Cannot be on the same row…

N-Queens: Model with TinyCSP

38

int n = 10;
TinyCSP csp = new TinyCSP();
Variable[] q = new Variable[n];

for (int i = 0; i < n; i++) {
 q[i] = csp.makeVariable(n);
}

for (int i = 0; i < n; i++) {
 for (int j = i+1; j < n; j++) {
 // queens i and j not on same ...
 csp.notEqual(q[i],q[j],0); // row

 }
}

‣Representation = a model:
– Holds an array of integer variables

with one variable per column.

– Cannot be on the same diagonal…

N-Queens: Model with TinyCSP

39

int n = 10;
TinyCSP csp = new TinyCSP();
Variable[] q = new Variable[n];

for (int i = 0; i < n; i++) {
 q[i] = csp.makeVariable(n);
}

for (int i = 0; i < n; i++) {
 for (int j = i+1; j < n; j++) {
 // queens i and j not on same …
 csp.notEqual(q[i],q[j],0); // row
 csp.notEqual(q[i],q[j],i-j); // left diagonal

 }
}

‣Representation = a model:
– Holds an array of integer variables

with one variable per column.

– Cannot be on the same diagonals…

N-Queens: Model with TinyCSP

40

int n = 10;
TinyCSP csp = new TinyCSP();
Variable[] q = new Variable[n];

for (int i = 0; i < n; i++) {
 q[i] = csp.makeVariable(n);
}

for (int i = 0; i < n; i++) {
 for (int j = i+1; j < n; j++) {
 // queens i and j not on same …
 csp.notEqual(q[i],q[j],0); // row
 csp.notEqual(q[i],q[j],i-j); // left diagonal
 csp.notEqual(q[i],q[j],j-i); // right diagonal
 }
}

TinyCSP
Computation

Computational Paradigm

42

Search

Constraint
Store

Domain
StoreC1

C2

C4 C5

Constraint

C3

Computational Paradigm

43

The propagation engine:
– This is the core of any constraint-programming solver.
– It is a simple fixpoint algorithm:

fixPoint()
{
 repeat
 select a constraint c;
 if c is infeasible given the domain store then
 return failure;
 else
 apply the pruning algorithm associated with c;
 until no constraint can remove any value from the domains of its variables;
 return success;
}

x[1]=2

44

Computational Paradigm

Failure

Success

X[0]=0

X[1]=2

Constraint
Store

Search

?

x[0]=0

?

TinyCSP class

45

public class TinyCSP {

 List<Constraint> constraints = new LinkedList<>();
 List<Variable> variables = new LinkedList<>();

 public Variable makeVariable(int domSize) {
 Variable x = new Variable(domSize);
 variables.add(x);
 return x;
 }

 public void notEqual(Variable x, Variable y, int offset) {
 constraints.add(new NotEqual(x, y, offset));
 fixPoint();
 }

 public void fixPoint() {
 boolean fix = false;
 while (!fix) {
 fix = true;
 for (Constraint c : constraints) {
 fix &= !c.propagate();
 }
 }
 }
}

abstract class Constraint {
 /**
 * Propagate the constraint and return
 * true if any value could be removed
 * @return true if at least one value of one
 * variable could be removed
 */
 abstract boolean propagate();
}

public class Variable {

 Domain dom;

 /**
 * Creates a variable with domain {0..n-1} */
 public Variable(int n) {
 dom = new Domain(n);
 }
}

Constraint Store

What does a constraint do?

46

‣Feasibility checking:
– Can the constraint be satisfied given the values in the domains of its variables?

‣Pruning:
– If satisfiable (= feasible), then a constraint removes values (from the domains

of its variables) that cannot be part of any solution.

The NotEqual Constraint x != y + offset

47

class NotEqual extends Constraint {

 Variable x, y;
 int offset;

 public NotEqual(Variable x, Variable y, int offset) {
 this.x = x;
 this.y = y;
 this.offset = offset;
 }

 public NotEqual(Variable x, Variable y) {
 this(x, y, 0);
 }

 @Override
 boolean propagate() {
 if (x.dom.isFixed()) {
 return y.dom.remove(x.dom.min() - offset);
 }
 if (y.dom.isFixed()) {
 return x.dom.remove(y.dom.min() + offset);
 }
 return false;
 }
}

State Management

48

‣When a value is removed it needs to be restored on backtrack
‣TinyCSP uses a “backup” mechanism of the domains

X
D(X) D(X)

1: clone D(X)

State Management

49

‣When a value is removed it needs to be restored on backtrack
‣TinyCSP uses a “backup” mechanism of the domains

X
D(X) D(X)

2: branch, for instance y=2

State Management

50

‣When a value is removed it needs to be restored on backtrack
‣TinyCSP uses a “backup” mechanism of the domains

X
D’(X)

D(X)

3: fixpoint; D(X) may be modified

State Management

51

‣When a value is removed it needs to be restored on backtrack
‣TinyCSP uses a “backup” mechanism of the domains

X
D’(X) D(X)

4: backtrack

State Management

52

‣When a value is removed it needs to be restored on backtrack
‣TinyCSP uses a “backup” mechanism of the domains

X
D(X)

5: restore the cloned domain

public class Variable {

 Domain dom;

 public Variable(int n) {
 dom = new Domain(n);
 }
}

private void restoreDomains(ArrayList<Domain> backup) {
 for (int i = 0; i < variables.size(); i++) {
 variables.get(i).dom = backup.get(i);
 }
}

DFS

53

public void dfs(Consumer<int[]> onSolution) {
 // pick a variable that is not yet fixed, if any
 Optional<Variable> notFixed = firstNotFixed();
 if (!notFixed.isPresent()) { // all variables fixed, a solution is found
 int[] solution = variables.stream().mapToInt(x -> x.dom.min()).toArray();
 onSolution.accept(solution);
 } else {
 Variable y = notFixed.get(); // take the unfixed variable
 int v = y.dom.min();
 ArrayList<Domain> backup = backupDomains();
 // left branch y = v
 try {
 y.dom.fix(v);
 fixPoint();
 dfs(onSolution);
 } catch (Inconsistency i) {
 }
 restoreDomains(backup);
 // right branch y != v
 try {
 y.dom.remove(v);
 fixPoint();
 dfs(onSolution);
 } catch (Inconsistency i) {
 }
 }
}

Clone domains

Branch (left) and Fixpoint

Restore domains

Branch (right) and Fixpoint

Domain implementation: java.util.BitSet

54

public class Domain {

 private BitSet values;

 public Domain(int n) {
 values = new BitSet(n);
 values.set(0, n);
 }

 public boolean isFixed() { size() == 1; }
 public int size() { return values.cardinality(); }
 public int min() { return values.nextSetBit(0); }

 public boolean remove(int v) {
 if (0 <= v && v < values.length()) {
 if (values.get(v)) {
 values.clear(v);
 if (size() == 0) throw new TinyCSP.Inconsistency();
 return true;
 }
 }
 return false;
 }

 public void fix(int v) {
 if (!values.get(v)) throw new TinyCSP.Inconsistency();
 values.clear();
 values.set(v);
 }

 public Domain clone() {
 return new Domain((BitSet) values.clone());
 }
}

private Domain(BitSet dom) {
 this.values = dom;
}

Performance

What to measure?

56

‣The number of nodes (recursive calls)
‣The time

‣Let’s compare the three approaches
– NQueensChecker (generate and filter)
– NQueensPrune (prune the search when violation detected on prefix of decisions)
– NQueensTinyTSP (use the TinyCSP solver)

NQueensChecker

57

N Nodes Time (ms) #solutions

8 19,173,961 167 92

9 435,848,050 4,526 352

10 11,111,111,111 101,497 724

NQueensPrune

58

N Nodes Time (ms) #solutions

12 856,189 130 14,200

13 4,674,890 690 73,712

14 27,358,553 4,550 365,596

15 171,129,072 30,138 2,279,184

NQueensTinyCSP

59

N Nodes Time (ms) #solutions

12 102,531 2,439 14,200

13 73,712 11,999 73,712

14 2,934,559 72,753 365,596

15 17,543,706 477,324 2,279,184

Where do we lose time in NQueensTinyCSP?

60

‣Profiler (Visual VM https://visualvm.github.io)

https://visualvm.github.io

One source of inefficiency: The Fixpoint Algorithm

61

fixPoint()
{
 repeat
 select a constraint c;
 if c is infeasible given the domain store then
 return failure;
 else
 apply the pruning algorithm associated with c;
 until no constraint can remove any value;
 return success;
}

If no domain of a variable of the constraint c was changed since last time it was
executed, then is it worth executing it again?

Data: The CSP hX,D0, Ci
Result: The greatest fixpoint domain
pruningNeeded true
D D0

while pruningNeeded do
Dp FC(D)
pruningNeeded Dp 6= D
D Dp

end
<latexit sha1_base64="B/t+Grt2Gt2m5gFrO7QqOXnnz5c=">AAAEbHicfVJNbxMxEN1tA5TlqwVuFZJFAmpRVe32AhKXikSoEioE+inFaeR4JxurXnuxvTSVtX+Of8E/4IQEJ454N9uqSStGsjyeN89jz7xhxpk2YfjDX1hs3Lp9Z+lucO/+g4ePllceH2qZKwoHVHKpjodEA2cCDgwzHI4zBSQdcjganrZL/OgbKM2k2DfnGfRTkgg2YpQYFxqs+D08hIQJS3giFTPjtOjt9APckcJ0FRNmD1JWlhEBwh/OOsQQuz8G1N7rohbmRCQc0PEGpoTHJ+EGaiOsqmCrqAhfQOfcVJTEvcuANmjEJpl0V6NYpoQJl9jKVC6YSD4CxBAjnIDRyKgcWvitQ6vb62hdqQLw0ZhxsLPsVmEDhGrSSVbTbHlE74tBe60C1lF1A7q59CVXwNfp4SL7+lOyCioCDCK+0sXA2WC5GW6GlaHrTlQ7Ta+2rhvHXxxLmqcgDOVE614UZqZviTKMcnBFcg0ZoackgZ5zBUlB920lgwK9cJEYjaRyy3W3il5lWJJqfZ4OXWZKzFjPY2XwJqyXm9GbvmUiyw0IOi00yjkyEpWaQjFTQA0/dw6h7vuMIjomilDjlDdb5aI/W3BZKQhcm8+oTFMiYpwy4WTRi/q2dNea0Xoxi5PJJU4mN+BMMJpZbGBiNLW77tjuFrM55dzsVBGdOUhLXiN7c8iIcfcdeyEkN2DcATckBbvuG58yUMRI9cpiohL3iMLW+//SyGSa5nanlWheGdedw63NKNyMPm81t9/VqlnyVr3n3poXea+9bW/H63oHHvW/+z/93/6fxV+Np43VxrNp6oJfc554M9Z4+Q8d7HO0</latexit><latexit sha1_base64="B/t+Grt2Gt2m5gFrO7QqOXnnz5c=">AAAEbHicfVJNbxMxEN1tA5TlqwVuFZJFAmpRVe32AhKXikSoEioE+inFaeR4JxurXnuxvTSVtX+Of8E/4IQEJ454N9uqSStGsjyeN89jz7xhxpk2YfjDX1hs3Lp9Z+lucO/+g4ePllceH2qZKwoHVHKpjodEA2cCDgwzHI4zBSQdcjganrZL/OgbKM2k2DfnGfRTkgg2YpQYFxqs+D08hIQJS3giFTPjtOjt9APckcJ0FRNmD1JWlhEBwh/OOsQQuz8G1N7rohbmRCQc0PEGpoTHJ+EGaiOsqmCrqAhfQOfcVJTEvcuANmjEJpl0V6NYpoQJl9jKVC6YSD4CxBAjnIDRyKgcWvitQ6vb62hdqQLw0ZhxsLPsVmEDhGrSSVbTbHlE74tBe60C1lF1A7q59CVXwNfp4SL7+lOyCioCDCK+0sXA2WC5GW6GlaHrTlQ7Ta+2rhvHXxxLmqcgDOVE614UZqZviTKMcnBFcg0ZoackgZ5zBUlB920lgwK9cJEYjaRyy3W3il5lWJJqfZ4OXWZKzFjPY2XwJqyXm9GbvmUiyw0IOi00yjkyEpWaQjFTQA0/dw6h7vuMIjomilDjlDdb5aI/W3BZKQhcm8+oTFMiYpwy4WTRi/q2dNea0Xoxi5PJJU4mN+BMMJpZbGBiNLW77tjuFrM55dzsVBGdOUhLXiN7c8iIcfcdeyEkN2DcATckBbvuG58yUMRI9cpiohL3iMLW+//SyGSa5nanlWheGdedw63NKNyMPm81t9/VqlnyVr3n3poXea+9bW/H63oHHvW/+z/93/6fxV+Np43VxrNp6oJfc554M9Z4+Q8d7HO0</latexit><latexit sha1_base64="B/t+Grt2Gt2m5gFrO7QqOXnnz5c=">AAAEbHicfVJNbxMxEN1tA5TlqwVuFZJFAmpRVe32AhKXikSoEioE+inFaeR4JxurXnuxvTSVtX+Of8E/4IQEJ454N9uqSStGsjyeN89jz7xhxpk2YfjDX1hs3Lp9Z+lucO/+g4ePllceH2qZKwoHVHKpjodEA2cCDgwzHI4zBSQdcjganrZL/OgbKM2k2DfnGfRTkgg2YpQYFxqs+D08hIQJS3giFTPjtOjt9APckcJ0FRNmD1JWlhEBwh/OOsQQuz8G1N7rohbmRCQc0PEGpoTHJ+EGaiOsqmCrqAhfQOfcVJTEvcuANmjEJpl0V6NYpoQJl9jKVC6YSD4CxBAjnIDRyKgcWvitQ6vb62hdqQLw0ZhxsLPsVmEDhGrSSVbTbHlE74tBe60C1lF1A7q59CVXwNfp4SL7+lOyCioCDCK+0sXA2WC5GW6GlaHrTlQ7Ta+2rhvHXxxLmqcgDOVE614UZqZviTKMcnBFcg0ZoackgZ5zBUlB920lgwK9cJEYjaRyy3W3il5lWJJqfZ4OXWZKzFjPY2XwJqyXm9GbvmUiyw0IOi00yjkyEpWaQjFTQA0/dw6h7vuMIjomilDjlDdb5aI/W3BZKQhcm8+oTFMiYpwy4WTRi/q2dNea0Xoxi5PJJU4mN+BMMJpZbGBiNLW77tjuFrM55dzsVBGdOUhLXiN7c8iIcfcdeyEkN2DcATckBbvuG58yUMRI9cpiohL3iMLW+//SyGSa5nanlWheGdedw63NKNyMPm81t9/VqlnyVr3n3poXea+9bW/H63oHHvW/+z/93/6fxV+Np43VxrNp6oJfc554M9Z4+Q8d7HO0</latexit><latexit sha1_base64="B/t+Grt2Gt2m5gFrO7QqOXnnz5c=">AAAEbHicfVJNbxMxEN1tA5TlqwVuFZJFAmpRVe32AhKXikSoEioE+inFaeR4JxurXnuxvTSVtX+Of8E/4IQEJ454N9uqSStGsjyeN89jz7xhxpk2YfjDX1hs3Lp9Z+lucO/+g4ePllceH2qZKwoHVHKpjodEA2cCDgwzHI4zBSQdcjganrZL/OgbKM2k2DfnGfRTkgg2YpQYFxqs+D08hIQJS3giFTPjtOjt9APckcJ0FRNmD1JWlhEBwh/OOsQQuz8G1N7rohbmRCQc0PEGpoTHJ+EGaiOsqmCrqAhfQOfcVJTEvcuANmjEJpl0V6NYpoQJl9jKVC6YSD4CxBAjnIDRyKgcWvitQ6vb62hdqQLw0ZhxsLPsVmEDhGrSSVbTbHlE74tBe60C1lF1A7q59CVXwNfp4SL7+lOyCioCDCK+0sXA2WC5GW6GlaHrTlQ7Ta+2rhvHXxxLmqcgDOVE614UZqZviTKMcnBFcg0ZoackgZ5zBUlB920lgwK9cJEYjaRyy3W3il5lWJJqfZ4OXWZKzFjPY2XwJqyXm9GbvmUiyw0IOi00yjkyEpWaQjFTQA0/dw6h7vuMIjomilDjlDdb5aI/W3BZKQhcm8+oTFMiYpwy4WTRi/q2dNea0Xoxi5PJJU4mN+BMMJpZbGBiNLW77tjuFrM55dzsVBGdOUhLXiN7c8iIcfcdeyEkN2DcATckBbvuG58yUMRI9cpiohL3iMLW+//SyGSa5nanlWheGdedw63NKNyMPm81t9/VqlnyVr3n3poXea+9bW/H63oHHvW/+z/93/6fxV+Np43VxrNp6oJfc554M9Z4+Q8d7HO0</latexit>

Improved Fixpoint Algorithm: Data-Driven

62

‣The first algorithm is “naïve”:
– It invokes on every constraint c of C all the time.

‣We can make this far better!
ℱc

Only enqueue the constraints
with some domain change in

their scope (including c itself)!

In next module, design an efficient CP solver

63

1. More fined-grained mechanism for the fixpoint and constraint propagation
2. Avoid creating “clones” of the domains and use memory efficient data-

structure to restore domains without creating objects
3. Implement a generic and flexible search that can easily be used for

complex branching decisions and complex ordering heuristics

CP and Declarative
Programming

Computational Paradigm of CP

65

‣Complete method, not a heuristic, because a search-tree exploration:
– Given enough time, it will find a / all solution(s) to a satisfaction problem.
– Given enough time, it will find an optimal solution to an optimization problem.

‣Focus on feasibility:
– How to use constraints to prune the

search space by removing domain values
that cannot belong to any solution?

‣Focus on reusability:
– Can model many different problems with just one solver

?

? ?

?

x[0]=0

x[1]=2 x[1]!=2

x[0]!=0

x[0]=1 x[0]!=1

?

x[2]=3 x[2]!=3

66

‣Focus on reusability:
– Can model many different problems with just one solver

Constraint Programming (CP)

67

“Constraint programming represents one of the closest approaches
computer science has yet made to the Holy Grail of programming:
the user states the problem, the computer solves it.” (E. Freuder)

States, you mean like this?

Not yet … rather like this:
range R = 1..8;
var{int} q[R] in R;
solve {
 forall(i in R, j in R: i < j) {
 q[i] ≠ q[j];
 q[i] ≠ q[j] + (j - i);
 q[i] ≠ q[j] - (j - i);
 }
}

but who knows in the future ;-)

State Problem = Declarative Programming

68

Declarative programming is a programming paradigm that expresses the logic
of a computation without describing its control flow.

Declarative programming for solving constrained combinatorial (optimization)
problems means that you express the properties of solutions that must be
found by “the solver”.

CP Slogan

69

CP = Model (+ Search)

Model description:
user API for 
declarative programming

The algorithmic part:
finding a solution that 
satisfies all the constraints, etc,
usually by exploring a search tree

Model

70

A model of a constraint satisfaction problem has:
– Variables with sets of possible values, called domains:

• Generally integer sets or integer intervals, such as x ∈ {5,9,10}, but also on floats, graphs, etc.

– Constraints on the variables:
• Arithmetic ex: 3x + 10y = z (linear constraints are a special case!)
• Logical ex: x < y or x > z (predicate logic)
• Combinatorial ex: Circuit(x1,…,xn) (structural requirements)

Variables: Example

71

‣Variable = a decision that should be made.
‣Domain = finite set of possible values for the variable.
‣Example:

– xi = the city to visit after city i in a tour for the traveling salesperson (TSP);
– D(xi) = {0,1,…,i –1,i +1,…,n –1}, where n = #cities: all the possible values for xi.

xi

Arithmetic Logical Combinatorial

Constraints: Examples

72

Sum

Sum(x[], y) ≡ (∑
i

xi) = y

Cardinality

yi = c ⇔ yic = 1 AllDifferent(x[])

AllDifferent

Application Domains

73

time

Scheduling

Routing

Rostering

A Combinatorial Constraint for Jobshop?

74

Yes!
– Disjunctive(…)

time

D(start[i]) = {0,…,H}
end[i] = start[i] + duration[i]

job1 ->
job2 ->

job3 ->

job4 ->

job5 ->

job6 ->

Disjunctive

TSP Modeling: CP vs MIP

75

index an array with variables!

minimize∑
i,j

dij ⋅ xij

subject to∑
i∈V

xij = 2 ∀i ∈ V

∑
i,j∈S,i≠j

xij ≤ |S | − 1 ∀S ⊂ V, S ≠ ϕ

xij ∈ {0,1}

succ[i] ∈ {0,…, i − 1,i + 1,n − 1}

subject to Circuit(succ)

minimize∑
i∈V

di,succ[i]

MIP CP

2
3

1

0

4

succ[0]=4

succ[4]=1

succ[1]=3

succ[3]=2
succ[2]=0

d0,succ[0]

Graph Coloring
Project

Coloring a Map/Graph

77

‣Specification:
– Color a map/graph so that no two adjacent territories/vertices have the same color.

‣The 4 Color Theorem:
– Every map can be colored with just 4 colors.
– Proven by Kenneth Appel and Wolfgang Haken.
– First major theorem proven with a computer.

Coloring a Graph

78

‣How to color a graph with constraint programming?
– Choose the variables.
– Express the constraints in terms of the variables.

‣What are the variables?
‣What are the domains of the variables?
‣How to express the constraints?

– State that two adjacent vertices cannot be given the same color.

What you need to implement

79

‣Looking for the first solution (not all of them)!

/**
 * Solve the graph coloring problem
 * @param instance a graph coloring instance
 * @return the color of each node such that no two adjacent node receive a same color,
 * or null if the problem is unfeasible
 */
public static int[] solve(GraphColoringInstance instance) {
 // TODO: solve the graph coloring problem using TinyCSP and return a solution
 // Hint: you can stop the search on first solution throwing and catching a exception
 // in the onSolution closure or you can modify the dfs search
}

public static class GraphColoringInstance {

 public final int n;
 public final List<int []> edges;
 public final int maxColor;

 public GraphColoringInstance(int n, List<int []> edges, int maxColor) {
 this.n = n;
 this.edges = edges;
 this.maxColor = maxColor;
 }
}

(a,b) encoded as [a,b]

Tests

80

GraphColoringTinyCSPTest

GraphColoringTinyCSP

Heuristics

Variable Heuristic Principle

82

First-fail for variable selection:
Since all variables must eventually be fixed, 
if there are no solutions under a node (failure), then we prefer to detect this as soon as possible, 
so that not too much time is spent exploring the subtree under the node.

X = v X != v

How to choose X?

Different implementations of first-fail principle

83

‣Select a variable with the smallest domain
‣Select a variable involved in most constraints
‣… (more to come in future lectures)

Variable Heuristic

84

public void dfs(Consumer<int[]> onSolution) {
 // pick a variable that is not yet fixed, if any
 Optional<Variable> notFixed = firstNotFixed();
 if (!notFixed.isPresent()) { // all variables fixed, a solution is found
 int[] solution = variables.stream().mapToInt(x -> x.dom.min()).toArray();
 onSolution.accept(solution);
 } else {
 Variable y = notFixed.get(); // take the unfixed variable
 int v = y.dom.min();
 ArrayList<Domain> backup = backupDomains();
 // left branch y = v
 try {
 y.dom.fix(v);
 fixPoint();
 dfs(onSolution);
 } catch (Inconsistency i) {
 }
 restoreDomains(backup);
 // right branch y != v
 try {
 y.dom.remove(v);
 fixPoint();
 dfs(onSolution);
 } catch (Inconsistency i) {
 }

restoreDomains(backup);
 }

Optional<Variable> firstNotFixed() {
 return variables.stream().filter(x -> !x.dom.isFixed()).findFirst();
}

Optional<Variable> smallestNotFixed() {
 int min = Integer.MAX_VALUE;
 Variable y = null;
 for (Variable x : variables) {
 if (!x.dom.isFixed() && x.dom.size() < min) {
 y = x;
 min = y.dom.size();
 }
 }
 return y == null ? Optional.empty() : Optional.of(y);
}

