Modeling in CP

Bin-Packing Case Study

Modeling is an Art

> Modeling a real world problem with variables, domains and constraints

Real world problem

’Mini

Modeling is an Art

> For a same problem, many different models
— Variables, domains and constraints

> The model can have dramatic effect on the solving time

’Mini

Case Study: Bin Packing

» Given n items, the size of each item
» Given m bins, each with a same capacity ¢
> Find a bin for each object such that the capacity of the bins is respected

L

Items

5 5 5
7 Size
1

]

]
]

R _ e

n
|
5
|
n

e e

|
| |
| |
| |
| |
| |

I

Bins

Decision variable ? £

> [tem point of view: in what bin do we place each item

> Bin point of view: what are the set of items allocated to each bin (set variable,
more complex)

L

Items

5 5 5
7 Size = w;
1

]

]
]

R e

|
|
!
|
|

e e

|
| |
| |
| |
| |
| |

I

Bins

Decision variables and Domains

x[0] x[1]1 x[2] x[3] x[4] x[3]

L II

ly ly L

D(x;) = {0,1,2,3,4}

x[6] x[7] Xx[8] x[9] x[10]
5 5)
/

D(lj) = {0,..,c}

’Mini

Solution

xX[0]=0 x[1]=0 x[2]=1 x[3]=2 x[4]=3 x[5]=4 x[6]=0 x[7]=3 x[8]=4 x[9]=1 x[10]=7

HEEE
T

5 5 5
7
. . 4 4
0 1 2 3 4
/

Bins

’Mini

Constraints

Vie|l.m]: l]

Z (X, =J) - w;

1€|1..n}

D(lj) = {0,..,c}

’Mini

Bin-Packing Model

int capa = 9;
int [] items

new int[] {2,2,2,2,4,4,5,5,5,6,7};

int nBins = 5;
int nItems = items.length;

Solver cp = makeSolver();
IntVar [] X = makeIntVarArray(cp, nlItems,nBins);
IntVar [] 1 = makeIntVarArray(cp, nBins,capa+l);

BoolVar [][] inBin = new BoolVar[nBins][nItems]; // inBin[j][i] = 1 if item 1 is placed in bin
J

// bin packing constraint

for (int j = 0; j < nBins; j++) {

for (int 1 = 0; 1 < nItems; 1++) {
inBin[j][1] = isEqual(x[i], 3J);
}
}
for (int j = 0; j < nBins; j++) {
IntVar[] wj] = new IntVar[nlItems];
for (int i = 0; i < nItems; i++) {
wj[1i] = mul(inBin[J][1], 1tems[1]);
}
cp.post(sum(w], 1[J1));
}

DFSearch dfs = makeDfs(cp,firstFail(Xx));

’Mini

Global Constraints for Bin-Packing i

Viell.ml: = Y (x=j)w

]
ic(1..n] 0

> This kind of constraint is very frequent, most of the solvers call it
BinPacking([/;, ..., L |, [x{, ..., x,], [Wy, ..., w,])

» Shaw, Paul. "A constraint for bin packing." CP 2004.

» Schaus, Pierre. "Solving balancing and bin-packing problems with constraint programming." PhD Thesis (2009)

10

Redundant Constraints -

» Redundant Constraints:
— Do not exclude any previous solution
— Improve the pruning of the search space (better communication between constraints)

11

How to find redundant constraints for your model 7 Lo

» EXpress properties of the solution
» Derive consequences of (combinations of) constraints
> BinPacking:

Viel|l.m]: l]

Z (X, =J) - w;

1€[1..n]

2 b= 2w L

jE|1l..m] i€[1..n]

12

Redundant Constraint

Infeasible, but not detected by V; € |1..m] : lj= Z (

2= 2w

JjE|1l..m] €| 1..n]
[3..7] + [2..5] = 14
[5..12] = 14

13

’Mini

Bin-Packing Model

int capa = 9;

int [] items new int[] {2,2,2,2,4,4,5,5,5,6,7};

int nBins = 5;
int nItems = items.length;

Solver cp = makeSolver();
IntVar [] X = makeIntVarArray(cp, nltems,nBins);
IntVar [] 1 = makeIntVarArray(cp, nBins,capa+tl);

BoolVar [][] inBin = new BoolVar[nBins][nItems];

for (int j = 0; J < nBins; Jj++) {

for (int i = 0; i < nItems; i++) {
inBin[j][i] = isEqual(x[i], 3J);
}
}
for (int j = 0; J < nBins; J++) {
IntVar[] wj = new IntVar[nItems];
for (int i = 0; i < nItems; i++) {
wj[1] = mul(inBin[]j][1], items[1]);
}
cp.post(sum(wj, 1[]]));
}

L

e’

cp.post(sum(l, IntStream.of(items).sum()));

14

ﬂ&mi

Bin-Packing

Symmetries

Symmetries fin

> Many problems naturally exhibit symmetries
> A symmetry maps solutions to solutions and non-solutions to non-solutions
» Symmetries leads to symmetrical search spaces

> Exploring symmetrical search spaces Is useless
— If no solution in one, no solution Iin the other

~ _
g S
. -
- ’/

- |
\
\
\
"\
|) * " a2 { \\
/ /! / \ \) \‘.
-_"fn/é'uéi % "e:\a\

Detect and remove symmetries (dynamic or static)

only inspect one (nhon-)solution 1n each equivalence class

16

Value Symmetry

A value symmetry is a bijection ¢ on values mapping (non-)solutions to (non-)solutions:

L1y L2y ydLn o Lo(1)sLa(2)s -+ rLo(n)

a1,d2,y...,0n O'(ajl),O'(CLQ),...,O'(ajn)

Value symmetries change the values

17

’Mini

Bin-Packing (value) Symmetries £
> Interchanging bins is still a valid solution

S 3 3
7
. . 4 4
18

Bins

Value symmetry breaking

» Solution: Impose an order on the bins
» For example: increasing loads [[0] < [[1] < [|2] < [|3] £ [|4]
» Does not remove all symmetries in case of ties

S 3 3
7
. . 4 4
19

Bins

’Mini

Better: Lexicographic Constraints

> Impose a total order on bins (no ties)

BoolVar [][] inBin = new BoolVar[nBins][nItems]; // inBin[7j][1]
// bin packing constraint

for (int j = 0; J < nBins; Jj++) {

for (int i = 0; i < nItems; i++) {
inBin[j][i] = isEqual(x[i], J);

}

}

for (int j = 0; j < nBins-1; j++) {
cp.post(inBin[]J] < 1inBin[]J+1]);

}

Lexicographic

Ordering

Frisch, A., Hnich, B., Kiziltan, Z., Miguel, ., & Walsh, T. (2002, September). Global constraints for lexicographic orderings. CP2002

20

1 1f item 1 is placed in bin j

1&mi

Variable Symmetry fo

A variable symmetry is a bijection o on variables mapping (hon-)solutions to (non-)solutions:

L1y L2y ...5dn o Lo(1)sLa(2)s++-rsLo(n)

4
ai,ag, ...,y ai,az,...,0n

Variable symmetries swap the variables

21

Bin-Packing (variable) Symmetries
> Exchanging similar items

S 3 3
7
. . 4 4
22

Bins

’Mini

Bin-Packing: Breaking variable symmetries

x[0] < x[1] = x[2] < x[3] x[4] < x[5] x[6] < x[7] =< x[8]

L
-

S 3 3
I
. . 4 4
23

Bins

x[9] < x[10]

’Mini

Drawback of symmetry breaking with constraints Fi

» 1. Sometimes useful, sometimes not

» Be careful because you suppress solutions.
» Consequence:

— Solution discovered very early in the search tree might not exist anymore (bad interaction with the
heuristic).

Model
+
breaking
symmetry
constraints

Challenge £

> |s it possible to remove variable/value symmetries such that the first solution
remains the same ?

> Yes! Dynamic symmetry breaking = Add constraints during search
—each time a (non-)solution is found)
— Special search heuristic

25

Dynamic Symmetry Breaking during Search

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7] Xx[8] x[9] x[10]

- S, S i
o \T
—y — o 4 PINOPS
L. S
- - g
/. - :4-‘7
= o
- <
. :‘
A
5 3
\ <. S
" OT ol
Lo NG
Q oo A
A3 Voo
S o o
- - e i

e

final int item = firstIndexNotBound(x).orElse(-1);
if (item == -1) {
return new Procedure[0];

DFSearch dfs = makeDfs(cp, () -> {

})i

26 Bins

}
else {
List<Procedure> branches = new LinkedList<>();
for (int j = 0; j <= nBins - 1; j++) {
if (x[item].contains(])) {
final int bin = j;
branches.add(() -> cp.post(equal(x[item],bin)));
}
}
return branches.toArray(new Procedure[]{});
}

’Mini

Dynamic Symmetry Breaking during Search o

27

x[0] x[1] x[2]

Bins

x[3] x[4] x[3]

< S, S i
P @i
- oo ’ PERDPS
. RS-
= gt g
4 PR
2 .
- R
v N
A
3 3
. .. &
"« 9% ol
e o W
Q A
N SRR
L) h oo
-

e

})i

DFSearch dfs = makeDfs(cp, () -> {

x[6] x[7] Xx[8] x[9] x[10]

I

final int item = firstIndexNotBound(x).orElse(-1);
if (item == -1) {
return new Procedure[0];

}

else {
int maxUsedBin = maxBound(x).orElse(-1); // index max used bin
List<Procedure> branches = new LinkedList<>();
for (int j = 0; jJ <= Math.min(maxUsedBin + 1, nBins - 1); J++) {
if (x[item].contains(])) {
final int bin = j;
branches.add(() -> cp.post(equal(x[item],bin)));
}
}

return branches.toArray(new Procedure[]{});

Symmetry breaking

» Static Symmetry Breaking
— Use different variables
— Add constraints to the model (ex: lexicographic)

> Dynamic Symmetry breaking (during search)
— Add constraints during the search (each time a (non—solution is found)
— Use special search heuristics

> Breaking symmetries does not always help (symmetries removed but so
might be the left-most solution)

28

Bin-Packing Demo ...

29

N
M (s o)

’Mini

ﬂﬂ NI

Steel Mill Slab Problem

https://www.csplib.org/Problems/prob038/

The Steel Mill Slab Problem -

» Steel produced by casting molten iron into slabs.

Orders
> loss

> Only a finite number of slab sizes.

| -
> An order has two properties, II
- a color (route required through the steel mill) and + weight.

> Given n input orders, assign the orders to slabs, the number and size of
which are also to be determined, such that the total weight of steel
produced is minimized.

> Assignment subject to constraints:
- Capacity: The total weight assigned to a slab cannot exceed the slab capacity.
+ Colors: Each slab can contain at most 2 colors.

31

Notations £

» 11 Is the number of orders
»C; € colors is the color of order i
»w. € N7 is the weight of order i

» 0 IS the set of different slab capacity. At most m slabs will be used, we label
them from 1 to m (m = n if not restricted)

32

Model £

» Decision variables:
. 0; € | 1..n] is the slab attributed to order i

> Auxiliary variables:
. p; € [0..maxcapa] is the weight of the orders attributed to slab

. l] € [0..maxcapa] is the minimal loss of slab j (determined by the slab of minimal
capacity 2 p;)

> Objective

minimize the total loss: Z l]

jE|1l..m]

33

Computing losses with Element Constraints

» Assume 3 slab capacities {5,8,10}, an order of size 5 and 1

» What slab to chose ? What is the loss ? 4,
[]

|
|
|
|
|
|
|
|
|
|
|
|
|

L 1

34

Computing losses with Element Constraints £

> , precompute the loss for every possible load

Load Loss
0

-

——
i

I
S—

]

——

I
e e

©c ~~ W DD =42 O NN =2 O =

e———eee
e

I
|

— e e e

35

Computing losses with Element Constraints

>» Assume 3 slab capacities {5,8,10}
»\We can preprocess an array L =[0,4,3,2,1,0,2,1,0,1,0].
> Loss for a total weight p; = 3?7L=[0,4,3,2,1,0,2,1,0,1,0].

> . Use element constraints to link loss and weight variables: /; = L|p;]

36

’Mini

Computing loads (Bin-Packing or Pack)

Vi€ [l.ml:pj=) (0;=)j)w

1€l1..n]

37

8.
9

’Mini

At most two colors!

Logical Or Constraint (and watched literals)

Modeling the Color Constraints

> At most 2 colors / slab

e Is color k used in slab j (yes 1, no 0)?

iISOr constraint

b iff (X1 or x2 or ... or Xn)

e Vjc[l.n]:

= (Ve
kecolors \i€|l..n]|c;=k

e

39

’Mini

Reified Or: IsOr Constraint £

> b iff (x1 or X2 or ... or Xn)
—b =true: post (X1 or x2 or ... or Xn) = the Or constraint and deactivate
—Db = false: set all variables x; to false
— Xi become true: set b to true and deactivate (we must listen to all variables)
—all xi’'s are false: set b to false (maintain them in a sparse-set)

40

The Or or Clause Constraint

» At least one boolean variable Is true:
— X1 O Xo Or ... Or Xn

-+ Can only propagate when all variables are false, except one (this is called
unit propagation).

- This is the only propagation used in modern SAT solvers.

41

First iImplementation -

> Listen to all variables
» Maintain sparse-set with unbound variables
> |f one variable become true, deactivate the constraint because it is satisfied.

> [f the sparse-set becomes empty and all other variables are false, throw an
InconsistencykException

> [f only one variable is unbound, the other ones are false, set the last one to
true (unit propagation)

> Can be done with O(1) per variable change but can we do better?

42

‘Watched literal (adapted to MiniCP) i

> Don't listen to all changes, only listening to two variables is enough.

> |dea: If two variables are either unassigned or assigned true, no need to do
anything.

{0,1} {0,1} L {0,1} {0,1}
left most unFixed right most unFixed
wL wR
x3.propagateOnFix(this) x7.propagateOnFix(this)

The constraint x1 or x2 or ... or x8 is
satisfied but the propagator doesn’t know

It because it is not listening to changes on
X5

43

Watched literal (adapted to MiniCP)

> Don't listen to all changes, only listening to two variables is enough

{0,1} {0,1} L

left most unFixed

wL
x3.propagateOnFix(this)

wR
Xe.propagateOnFix(this)

The constraint x1 or x2 or ...
or x8 is satisfied but the

propagator doesn’t know it
because it is not listening to
changes on x5

44

’Mini

Unit Propagation

> |f wL = wR (only one variable != 0), it must be set to 1
> |f wL > wR, all variable are zero, we must fail (inconsistency).

45

Reified Or: IsOr Constraint £

> b iff (x1 or X2 or ... or Xn)
—b =true: post (X1 or x2 or ... or Xn) = the Or constraint and deactivate
—Db = false: set all variables x; to false
— Xi become true: set b to true and deactivate (we must listen to all variables)
—all xi’'s are false: set b to false (maintain them in a sparse-set)

46

> Exercise: bijection on graph coloring for value symmetries
» Redundant constraints
» Static vs Dynamic symmetry breaking

47

