
Modeling in CP

Bin-Packing Case Study



Modeling is an Art
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‣Modeling a real world problem with variables, domains and constraints

Real world problem
Model



Modeling is an Art
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‣For a same problem, many different models
– Variables, domains and constraints

‣The model can have dramatic effect on the solving time



Case Study: Bin Packing
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‣Given n items, the size of each item
‣Given m bins, each with a same capacity c
‣Find a bin for each object such that the capacity of the bins is respected
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Decision variable ?
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‣ Item point of view: in what bin do we place each item
‣Bin point of view: what are the set of items allocated to each bin (set variable, 

more complex)
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Decision variables and Domains
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Solution
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Constraints
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  ∀j ∈ [1..m] : lj = ∑
i∈[1..n]

(xi = j) ⋅ wi
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Bin-Packing Model
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int capa = 9;
int [] items = new int[] {2,2,2,2,4,4,5,5,5,6,7};

int nBins = 5;
int nItems = items.length;

Solver cp = makeSolver();
IntVar []  x = makeIntVarArray(cp, nItems,nBins);
IntVar []  l = makeIntVarArray(cp, nBins,capa+1);

BoolVar [][] inBin = new BoolVar[nBins][nItems]; // inBin[j][i] = 1 if item i is placed in bin 
j
// bin packing constraint
for (int j = 0; j < nBins; j++) {
    for (int i = 0; i < nItems; i++) {
        inBin[j][i] = isEqual(x[i], j);
    }
}
for (int j = 0; j < nBins; j++) {
    IntVar[] wj = new IntVar[nItems];
    for (int i = 0; i < nItems; i++) {
        wj[i] = mul(inBin[j][i], items[i]);
    }
    cp.post(sum(wj, l[j]));
}

DFSearch dfs = makeDfs(cp,firstFail(x));

  lj = ∑
i∈[1..n]

(xi = j) ⋅ wi



Global Constraints for Bin-Packing
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‣This kind of constraint is very frequent, most of the solvers call it

‣ Shaw, Paul. "A constraint for bin packing." CP 2004.

‣ Schaus, Pierre. "Solving balancing and bin-packing problems with constraint programming." PhD Thesis (2009)

∀j ∈ [1..m] : lj = ∑
i∈[1..n]

(xi = j) ⋅ wi

BinPacking([l1, …, lm], [x1, …, xn], [w1, …, wn])
BinPacking
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Redundant Constraints
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‣Redundant Constraints:
– Do not exclude any previous solution
– Improve the pruning of the search space (better communication between constraints)

Constraint Store

Domain Store

Constraint

Constraint

Constraint

Constraint

Redundant 
Constraint

💪



How to find redundant constraints for your model ?
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‣Express properties of the solution
‣Derive consequences of (combinations of) constraints
‣BinPacking:

  

  

∀j ∈ [1..m] : lj = ∑
i∈[1..n]

(xi = j) ⋅ wi

∑
j∈[1..m]

lj = ∑
i∈[1..n]

wi 💪



Redundant Constraint

13

Infeasible, but not detected by  ∀j ∈ [1..m] : lj = ∑
i∈[1..n]

(xi = j) ⋅ wi

w1 = 3

w2 = 4

w4 = 2

w3 = 3w5 = 2

∑
j∈[1..m]

lj = ∑
i∈[1..n]

wi

[3..7] + [2..5] = 14

[5..12] = 14

Failure detected by redundant constraints



Bin-Packing Model
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int capa = 9;
int [] items = new int[] {2,2,2,2,4,4,5,5,5,6,7};

int nBins = 5;
int nItems = items.length;

Solver cp = makeSolver();
IntVar []  x = makeIntVarArray(cp, nItems,nBins);
IntVar []  l = makeIntVarArray(cp, nBins,capa+1);

BoolVar [][] inBin = new BoolVar[nBins][nItems]; // inBin[j][i] = 1 if item i is placed in bin j
// bin packing constraint
for (int j = 0; j < nBins; j++) {
    for (int i = 0; i < nItems; i++) {
        inBin[j][i] = isEqual(x[i], j);
    }
}
for (int j = 0; j < nBins; j++) {
    IntVar[] wj = new IntVar[nItems];
    for (int i = 0; i < nItems; i++) {
        wj[i] = mul(inBin[j][i], items[i]);
    }
    cp.post(sum(wj, l[j]));
}

// redundant constraint 💪
cp.post(sum(l, IntStream.of(items).sum()));



Bin-Packing

Symmetries



Symmetries
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‣Many problems naturally exhibit symmetries
‣A symmetry maps solutions to solutions and non-solutions to non-solutions
‣Symmetries leads to symmetrical search spaces
‣Exploring symmetrical search spaces is useless

– If no solution in one, no solution in the other

Detect and remove symmetries (dynamic or static)
only inspect one (non-)solution in each equivalence class



Value Symmetry
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A value symmetry is a bijection  on values mapping (non-)solutions to (non-)solutions:
σ

x1, x2, . . . , xn

a1, a2, . . . , an

x�(1), x�(2), . . . , x�(n)�

Value symmetries change the values

�(a1),�(a2), . . . ,�(an)



Bin-Packing (value) Symmetries
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‣ Interchanging bins is still a valid solution
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Value symmetry breaking
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‣Solution: Impose an order on the bins
‣For example: increasing loads 
‣Does not remove all symmetries in case of ties

l[0] ≤ l[1] ≤ l[2] ≤ l[3] ≤ l[4]
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Better: Lexicographic Constraints
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‣ Impose a total order on bins (no ties)

Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., & Walsh, T. (2002, September). Global constraints for lexicographic orderings. CP2002

BoolVar [][] inBin = new BoolVar[nBins][nItems]; // inBin[j][i] = 1 if item i is placed in bin j
// bin packing constraint
for (int j = 0; j < nBins; j++) {
    for (int i = 0; i < nItems; i++) {
        inBin[j][i] = isEqual(x[i], j);
    }
}
for (int j = 0; j < nBins-1; j++) {
    cp.post( inBin[j]  inBin[j+1]);
}

≼

Lexicographic 
Ordering



Variable Symmetry
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A variable symmetry is a bijection  on variables mapping (non-)solutions to (non-)solutions:
σ

x1, x2, . . . , xn

a1, a2, . . . , an

x�(1), x�(2), . . . , x�(n)

a1, a2, . . . , an
�

Variable symmetries swap the variables



Bin-Packing (variable) Symmetries
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‣Exchanging similar items
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Bin-Packing: Breaking variable symmetries
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Model

Drawback of symmetry breaking with constraints
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‣⚠ Sometimes useful, sometimes not
‣Be careful because you suppress solutions. 
‣Consequence:

– Solution discovered very early in the search tree might not exist anymore (bad interaction with the 
heuristic). 

First 
found

Model 
+ 

breaking 
symmetry 

constraints

❌ ❌

First found



Challenge
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‣ Is it possible to remove variable/value symmetries such that the first solution 
remains the same ?

‣Yes! Dynamic  symmetry breaking = Add constraints during search 
– each time a (non-)solution is found)
– Special search heuristic 



Dynamic Symmetry Breaking during Search
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x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] x[9] x[10]

DFSearch dfs = makeDfs(cp, () -> {
    final int item = firstIndexNotBound(x).orElse(-1);
    if (item == -1) {
        return new Procedure[0];
    }
    else {
       
        List<Procedure> branches = new LinkedList<>();
        for (int j = 0; j <= nBins - 1; j++) {
            if (x[item].contains(j)) {
                final int bin = j;
                branches.add(() -> cp.post(equal(x[item],bin)));
            }
        }
        return branches.toArray(new Procedure[]{});
    }
});



Dynamic Symmetry Breaking during Search
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x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] x[9] x[10]

DFSearch dfs = makeDfs(cp, () -> {
    final int item = firstIndexNotBound(x).orElse(-1);
    if (item == -1) {
        return new Procedure[0];
    }
    else {
        int maxUsedBin = maxBound(x).orElse(-1); // index max used bin
        List<Procedure> branches = new LinkedList<>();
        for (int j = 0; j <= Math.min(maxUsedBin + 1, nBins - 1); j++) {
            if (x[item].contains(j)) {
                final int bin = j;
                branches.add(() -> cp.post(equal(x[item],bin)));
            }
        }
        return branches.toArray(new Procedure[]{});
    }
});



Symmetry breaking
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‣Static Symmetry Breaking
– Use different variables
– Add constraints to the model (ex: lexicographic)

‣Dynamic Symmetry breaking (during search)
– Add constraints during the search (each time a (non—solution is found)
– Use special search heuristics

‣Breaking symmetries does not always help (symmetries removed but so 
might be the left-most solution)



Bin-Packing Demo … 👩💻🧑💻
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Steel Mill Slab Problem

(Programming Assignment)

https://www.csplib.org/Problems/prob038/



The Steel Mill Slab Problem
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‣ Steel produced by casting molten iron into slabs.  
‣ Only a finite number of slab sizes. 
‣ An order has two properties, 

• a color (route required through the steel mill) and + weight. 

‣ Given n input orders, assign the orders to slabs, the number and size of 
which are also to be determined, such that the total weight of steel 
produced is minimized. 
‣ Assignment subject to constraints:

• Capacity: The total weight assigned to a slab cannot exceed the slab capacity.
• Colors: Each slab can contain at most 2 colors. 

Possible slabs Orders

loss

A solution



Notations
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‣  is the number of orders

‣  is the color of order 

‣  is the weight of order 

‣   is the set of different slab capacity. At most  slabs will be used, we label 
them from 1 to  (  if not restricted)

n
ci ∈ colors i
wi ∈ ℕ+ i
σ m

m m = n



Model
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‣Decision variables:  
•  is the slab attributed to order 

‣Auxiliary variables:
•  is the weight of the orders attributed to slab 

•  is the minimal loss of slab  (determined by the slab of minimal 
capacity ) 

‣Objective
minimize the total loss: 

oi ∈ [1..n] i

pj ∈ [0..maxcapa] j
lj ∈ [0..maxcapa] j

≥ pj

∑
j∈[1..m]

lj



Computing losses with Element Constraints
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‣Assume 3 slab capacities {5,8,10}, an order of size 5 and 1
‣What slab to chose ? What is the loss ?
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Computing losses with Element Constraints
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‣💡precompute the loss for every possible load

Load Loss

10 0

9 1

8 0

7 1

6 2

5 0

4 1

3 2

2 3

1 4

0 0



Computing losses with Element Constraints
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‣Assume 3 slab capacities {5,8,10}
‣We can preprocess an array L = [0,4,3,2,1,0,2,1,0,1,0].

‣Loss for a total weight   L = [0,4,3,2,1,0,2,1,0,1,0].

‣💡Use element constraints to link loss and weight variables: 
pj = 3?

lj = L[pj]

element



Computing loads (Bin-Packing or Pack)
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  ∀j ∈ [1..m] : pj = ∑
i∈[1..n]

(oi = j) ⋅ wi BinPacking



At most two colors!

Logical Or Constraint (and watched literals)



Modeling the Color Constraints
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‣At most 2 colors / slab

• Is color k used in slab j (yes 1, no 0)?

_

i2[1..n]|ci=k

(oi = j)

• 8j 2 [1..n] :

X

k2colors

0

@
_

i2[1..n]|ci=k

(oi = j)

1

A  2.

isEqual

isOr constraint 
b iff (x1 or x2 or … or xn)

isOr



Reified Or: IsOr Constraint
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‣b iff (x1 or x2 or … or xn)
– b = true: post (x1 or x2 or … or xn) = the Or constraint and deactivate
– b = false: set all variables xi to false
– xi become true: set b to true and deactivate (we must listen to all variables)
– all xi’s are false: set b to false (maintain them in a sparse-set)



The Or or Clause Constraint

41

‣At least one boolean variable is true:
– x1 or x2 or … or xn

• Can only propagate when all variables are false, except one (this is called 
unit propagation). 

• This is the only propagation used in modern SAT solvers.



First implementation
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‣Listen to all variables
‣Maintain sparse-set with unbound variables
‣ If one variable become true, deactivate the constraint because it is satisfied.
‣ If the sparse-set becomes empty and all other variables are false, throw an 

InconsistencyException
‣ If only one variable is unbound, the other ones are false, set the last one to 

true (unit propagation)
‣Can be done with O(1) per variable change but can we do better?



Watched literal (adapted to MiniCP)
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‣Don’t listen to all changes, only listening to two variables is enough.
‣ Idea: If two variables are either unassigned or assigned true, no need to do 

anything. 

0 0 {0,1} {0,1} 1 {0,1} {0,1} 0

x1 x2 x3 x4 x5 x6 x7 x8

The constraint x1 or x2 or … or x8 is 
satisfied but the propagator doesn’t know 
it because it is not listening to changes on 

x5

wL wR

left most unFixed

x3.propagateOnFix(this) x7.propagateOnFix(this)

right most unFixed



Watched literal (adapted to MiniCP)

44

‣Don’t listen to all changes, only listening to two variables is enough

0 0 {0,1} {0,1} 1 {0,1} 0 0

x1 x2 x3 x4 x5 x6 x7 x8

The constraint x1 or x2 or … 
or x8 is satisfied but the 

propagator doesn’t know it 
because it is not listening to 

changes on x5

wL wR

left most unFixed

x3.propagateOnFix(this) x6.propagateOnFix(this)



Unit Propagation
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‣ If wL = wR (only one variable != 0), it must be set to 1
‣ If wL > wR, all variable are zero, we must fail (inconsistency).



Reified Or: IsOr Constraint
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‣b iff (x1 or x2 or … or xn)
– b = true: post (x1 or x2 or … or xn) = the Or constraint and deactivate
– b = false: set all variables xi to false
– xi become true: set b to true and deactivate (we must listen to all variables)
– all xi’s are false: set b to false (maintain them in a sparse-set)
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‣Exercise: bijection on graph coloring for value symmetries
‣Redundant constraints
‣Static vs Dynamic symmetry breaking


