
Modeling in CP

Bin-Packing Case Study

Modeling is an Art

2

‣Modeling a real world problem with variables, domains and constraints

Real world problem
Model

Modeling is an Art

3

‣For a same problem, many different models
– Variables, domains and constraints

‣The model can have dramatic effect on the solving time

Case Study: Bin Packing

4

‣Given n items, the size of each item
‣Given m bins, each with a same capacity c
‣Find a bin for each object such that the capacity of the bins is respected

4
2

6

2 2 2
4 5 5 5

7

Bins

Items

C

Size

Decision variable ?

5

‣ Item point of view: in what bin do we place each item
‣Bin point of view: what are the set of items allocated to each bin (set variable,

more complex)

4
2

6

2 2 2
4 5 5 5

7

Bins

Items

C

Size = wj

Decision variables and Domains

6

4
2

6

2 2 2
4

5 5 5
7

Bins

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] x[9] x[10]

0 1 2 3 4

D(xi) = {0,1,2,3,4}

D(lj) = {0,..,c}

l0 l1 l2 l3 l4

Solution

7

4
2

6

2 2

2
4

5 55
7

Bins

4
2

6

2 2 2
4

5 5 5
7

x[0]=0 x[1]=0 x[2]=1 x[3]=2 x[4]=3 x[5]=4 x[6]=0 x[7]=3 x[8]=4 x[9]=1 x[10]=7

0 1 2 3 4

Constraints

8

 ∀j ∈ [1..m] : lj = ∑
i∈[1..n]

(xi = j) ⋅ wi

4
2

6

2 2

2
4

5 55
7

0 1 2 3 4

l0 l1 l3

D(lj) = {0,..,c}

Bin-Packing Model

9

int capa = 9;
int [] items = new int[] {2,2,2,2,4,4,5,5,5,6,7};

int nBins = 5;
int nItems = items.length;

Solver cp = makeSolver();
IntVar [] x = makeIntVarArray(cp, nItems,nBins);
IntVar [] l = makeIntVarArray(cp, nBins,capa+1);

BoolVar [][] inBin = new BoolVar[nBins][nItems]; // inBin[j][i] = 1 if item i is placed in bin
j
// bin packing constraint
for (int j = 0; j < nBins; j++) {
 for (int i = 0; i < nItems; i++) {
 inBin[j][i] = isEqual(x[i], j);
 }
}
for (int j = 0; j < nBins; j++) {
 IntVar[] wj = new IntVar[nItems];
 for (int i = 0; i < nItems; i++) {
 wj[i] = mul(inBin[j][i], items[i]);
 }
 cp.post(sum(wj, l[j]));
}

DFSearch dfs = makeDfs(cp,firstFail(x));

 lj = ∑
i∈[1..n]

(xi = j) ⋅ wi

Global Constraints for Bin-Packing

10

‣This kind of constraint is very frequent, most of the solvers call it

‣ Shaw, Paul. "A constraint for bin packing." CP 2004.

‣ Schaus, Pierre. "Solving balancing and bin-packing problems with constraint programming." PhD Thesis (2009)

∀j ∈ [1..m] : lj = ∑
i∈[1..n]

(xi = j) ⋅ wi

BinPacking([l1, …, lm], [x1, …, xn], [w1, …, wn])
BinPacking

4
2

6

2 2

2
4

5 55
7

0 1 2 3 4

l0 l1 l3

Redundant Constraints

11

‣Redundant Constraints:
– Do not exclude any previous solution
– Improve the pruning of the search space (better communication between constraints)

Constraint Store

Domain Store

Constraint

Constraint

Constraint

Constraint

Redundant
Constraint

💪

How to find redundant constraints for your model ?

12

‣Express properties of the solution
‣Derive consequences of (combinations of) constraints
‣BinPacking:

∀j ∈ [1..m] : lj = ∑
i∈[1..n]

(xi = j) ⋅ wi

∑
j∈[1..m]

lj = ∑
i∈[1..n]

wi 💪

Redundant Constraint

13

Infeasible, but not detected by ∀j ∈ [1..m] : lj = ∑
i∈[1..n]

(xi = j) ⋅ wi

w1 = 3

w2 = 4

w4 = 2

w3 = 3w5 = 2

∑
j∈[1..m]

lj = ∑
i∈[1..n]

wi

[3..7] + [2..5] = 14

[5..12] = 14

Failure detected by redundant constraints

Bin-Packing Model

14

int capa = 9;
int [] items = new int[] {2,2,2,2,4,4,5,5,5,6,7};

int nBins = 5;
int nItems = items.length;

Solver cp = makeSolver();
IntVar [] x = makeIntVarArray(cp, nItems,nBins);
IntVar [] l = makeIntVarArray(cp, nBins,capa+1);

BoolVar [][] inBin = new BoolVar[nBins][nItems]; // inBin[j][i] = 1 if item i is placed in bin j
// bin packing constraint
for (int j = 0; j < nBins; j++) {
 for (int i = 0; i < nItems; i++) {
 inBin[j][i] = isEqual(x[i], j);
 }
}
for (int j = 0; j < nBins; j++) {
 IntVar[] wj = new IntVar[nItems];
 for (int i = 0; i < nItems; i++) {
 wj[i] = mul(inBin[j][i], items[i]);
 }
 cp.post(sum(wj, l[j]));
}

// redundant constraint 💪
cp.post(sum(l, IntStream.of(items).sum()));

Bin-Packing

Symmetries

Symmetries

16

‣Many problems naturally exhibit symmetries
‣A symmetry maps solutions to solutions and non-solutions to non-solutions
‣Symmetries leads to symmetrical search spaces
‣Exploring symmetrical search spaces is useless

– If no solution in one, no solution in the other

Detect and remove symmetries (dynamic or static)
only inspect one (non-)solution in each equivalence class

Value Symmetry

17

A value symmetry is a bijection on values mapping (non-)solutions to (non-)solutions:
σ

x1, x2, . . . , xn

a1, a2, . . . , an

x�(1), x�(2), . . . , x�(n)�

Value symmetries change the values

�(a1),�(a2), . . . ,�(an)

Bin-Packing (value) Symmetries

18

‣ Interchanging bins is still a valid solution

2

6

2

2
4

55

2

7

4

5

Bins

Value symmetry breaking

19

‣Solution: Impose an order on the bins
‣For example: increasing loads
‣Does not remove all symmetries in case of ties

l[0] ≤ l[1] ≤ l[2] ≤ l[3] ≤ l[4]

4

5

2

2

5

2

6

2

7

4

5

Bins

Better: Lexicographic Constraints

20

‣ Impose a total order on bins (no ties)

Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., & Walsh, T. (2002, September). Global constraints for lexicographic orderings. CP2002

BoolVar [][] inBin = new BoolVar[nBins][nItems]; // inBin[j][i] = 1 if item i is placed in bin j
// bin packing constraint
for (int j = 0; j < nBins; j++) {
 for (int i = 0; i < nItems; i++) {
 inBin[j][i] = isEqual(x[i], j);
 }
}
for (int j = 0; j < nBins-1; j++) {
 cp.post(inBin[j] inBin[j+1]);
}

≼

Lexicographic
Ordering

Variable Symmetry

21

A variable symmetry is a bijection on variables mapping (non-)solutions to (non-)solutions:
σ

x1, x2, . . . , xn

a1, a2, . . . , an

x�(1), x�(2), . . . , x�(n)

a1, a2, . . . , an
�

Variable symmetries swap the variables

Bin-Packing (variable) Symmetries

22

‣Exchanging similar items

2

6

2

2
4

55

2

7

4

5

Bins

Bin-Packing: Breaking variable symmetries

23

2

6

2

2
4

55

2

7

4

5

Bins

4
2

6

2 2 2
4

5 5 5
7

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] x[9] x[10]≤ ≤ ≤ ≤ ≤ ≤ ≤

Model

Drawback of symmetry breaking with constraints

24

‣⚠ Sometimes useful, sometimes not
‣Be careful because you suppress solutions.
‣Consequence:

– Solution discovered very early in the search tree might not exist anymore (bad interaction with the
heuristic).

First
found

Model
+

breaking
symmetry

constraints

❌ ❌

First found

Challenge

25

‣ Is it possible to remove variable/value symmetries such that the first solution
remains the same ?

‣Yes! Dynamic symmetry breaking = Add constraints during search
– each time a (non-)solution is found)
– Special search heuristic

Dynamic Symmetry Breaking during Search

26

4

2

6

2 2

2

4

5

5 5
7

Bins

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] x[9] x[10]

DFSearch dfs = makeDfs(cp, () -> {
 final int item = firstIndexNotBound(x).orElse(-1);
 if (item == -1) {
 return new Procedure[0];
 }
 else {

 List<Procedure> branches = new LinkedList<>();
 for (int j = 0; j <= nBins - 1; j++) {
 if (x[item].contains(j)) {
 final int bin = j;
 branches.add(() -> cp.post(equal(x[item],bin)));
 }
 }
 return branches.toArray(new Procedure[]{});
 }
});

Dynamic Symmetry Breaking during Search

27

4

2

6

2 2

2

4

5

5 5
7

Bins

x[0] x[1] x[2] x[3] x[4] x[5] x[6] x[7] x[8] x[9] x[10]

DFSearch dfs = makeDfs(cp, () -> {
 final int item = firstIndexNotBound(x).orElse(-1);
 if (item == -1) {
 return new Procedure[0];
 }
 else {
 int maxUsedBin = maxBound(x).orElse(-1); // index max used bin
 List<Procedure> branches = new LinkedList<>();
 for (int j = 0; j <= Math.min(maxUsedBin + 1, nBins - 1); j++) {
 if (x[item].contains(j)) {
 final int bin = j;
 branches.add(() -> cp.post(equal(x[item],bin)));
 }
 }
 return branches.toArray(new Procedure[]{});
 }
});

Symmetry breaking

28

‣Static Symmetry Breaking
– Use different variables
– Add constraints to the model (ex: lexicographic)

‣Dynamic Symmetry breaking (during search)
– Add constraints during the search (each time a (non—solution is found)
– Use special search heuristics

‣Breaking symmetries does not always help (symmetries removed but so
might be the left-most solution)

Bin-Packing Demo … 👩💻🧑💻

29

Steel Mill Slab Problem

(Programming Assignment)

https://www.csplib.org/Problems/prob038/

The Steel Mill Slab Problem

31

‣ Steel produced by casting molten iron into slabs.
‣ Only a finite number of slab sizes.
‣ An order has two properties,

• a color (route required through the steel mill) and + weight.

‣ Given n input orders, assign the orders to slabs, the number and size of
which are also to be determined, such that the total weight of steel
produced is minimized.
‣ Assignment subject to constraints:

• Capacity: The total weight assigned to a slab cannot exceed the slab capacity.
• Colors: Each slab can contain at most 2 colors.

Possible slabs Orders

loss

A solution

Notations

32

‣ is the number of orders

‣ is the color of order

‣ is the weight of order

‣ is the set of different slab capacity. At most slabs will be used, we label
them from 1 to (if not restricted)

n
ci ∈ colors i
wi ∈ ℕ+ i
σ m

m m = n

Model

33

‣Decision variables:
• is the slab attributed to order

‣Auxiliary variables:
• is the weight of the orders attributed to slab

• is the minimal loss of slab (determined by the slab of minimal
capacity)

‣Objective
minimize the total loss:

oi ∈ [1..n] i

pj ∈ [0..maxcapa] j
lj ∈ [0..maxcapa] j

≥ pj

∑
j∈[1..m]

lj

Computing losses with Element Constraints

34

‣Assume 3 slab capacities {5,8,10}, an order of size 5 and 1
‣What slab to chose ? What is the loss ?

5

1
5

8

10

Computing losses with Element Constraints

35

‣💡precompute the loss for every possible load

Load Loss

10 0

9 1

8 0

7 1

6 2

5 0

4 1

3 2

2 3

1 4

0 0

Computing losses with Element Constraints

36

‣Assume 3 slab capacities {5,8,10}
‣We can preprocess an array L = [0,4,3,2,1,0,2,1,0,1,0].

‣Loss for a total weight L = [0,4,3,2,1,0,2,1,0,1,0].

‣💡Use element constraints to link loss and weight variables:
pj = 3?

lj = L[pj]

element

Computing loads (Bin-Packing or Pack)

37

 ∀j ∈ [1..m] : pj = ∑
i∈[1..n]

(oi = j) ⋅ wi BinPacking

At most two colors!

Logical Or Constraint (and watched literals)

Modeling the Color Constraints

39

‣At most 2 colors / slab

• Is color k used in slab j (yes 1, no 0)?

_

i2[1..n]|ci=k

(oi = j)

• 8j 2 [1..n] :

X

k2colors

0

@
_

i2[1..n]|ci=k

(oi = j)

1

A  2.

isEqual

isOr constraint
b iff (x1 or x2 or … or xn)

isOr

Reified Or: IsOr Constraint

40

‣b iff (x1 or x2 or … or xn)
– b = true: post (x1 or x2 or … or xn) = the Or constraint and deactivate
– b = false: set all variables xi to false
– xi become true: set b to true and deactivate (we must listen to all variables)
– all xi’s are false: set b to false (maintain them in a sparse-set)

The Or or Clause Constraint

41

‣At least one boolean variable is true:
– x1 or x2 or … or xn

• Can only propagate when all variables are false, except one (this is called
unit propagation).

• This is the only propagation used in modern SAT solvers.

First implementation

42

‣Listen to all variables
‣Maintain sparse-set with unbound variables
‣ If one variable become true, deactivate the constraint because it is satisfied.
‣ If the sparse-set becomes empty and all other variables are false, throw an

InconsistencyException
‣ If only one variable is unbound, the other ones are false, set the last one to

true (unit propagation)
‣Can be done with O(1) per variable change but can we do better?

Watched literal (adapted to MiniCP)

43

‣Don’t listen to all changes, only listening to two variables is enough.
‣ Idea: If two variables are either unassigned or assigned true, no need to do

anything.

0 0 {0,1} {0,1} 1 {0,1} {0,1} 0

x1 x2 x3 x4 x5 x6 x7 x8

The constraint x1 or x2 or … or x8 is
satisfied but the propagator doesn’t know
it because it is not listening to changes on

x5

wL wR

left most unFixed

x3.propagateOnFix(this) x7.propagateOnFix(this)

right most unFixed

Watched literal (adapted to MiniCP)

44

‣Don’t listen to all changes, only listening to two variables is enough

0 0 {0,1} {0,1} 1 {0,1} 0 0

x1 x2 x3 x4 x5 x6 x7 x8

The constraint x1 or x2 or …
or x8 is satisfied but the

propagator doesn’t know it
because it is not listening to

changes on x5

wL wR

left most unFixed

x3.propagateOnFix(this) x6.propagateOnFix(this)

Unit Propagation

45

‣ If wL = wR (only one variable != 0), it must be set to 1
‣ If wL > wR, all variable are zero, we must fail (inconsistency).

Reified Or: IsOr Constraint

46

‣b iff (x1 or x2 or … or xn)
– b = true: post (x1 or x2 or … or xn) = the Or constraint and deactivate
– b = false: set all variables xi to false
– xi become true: set b to true and deactivate (we must listen to all variables)
– all xi’s are false: set b to false (maintain them in a sparse-set)

47

‣Exercise: bijection on graph coloring for value symmetries
‣Redundant constraints
‣Static vs Dynamic symmetry breaking

