
Constraint
Programming
The AllDifferent Constraint

AllDifferent: Binary Decomposition

2

AllDifferent

3

– Scope:
• An array x of n variables with the same domain, D, for each variable xi.
• D satisfies |D| ≥ n.

– Requirement:

∀i, j ∈ {1..n} : i ≠ j ⟹ xi ≠ xj

Can be modeled
using n(n–1)/2 = O(n2)
NotEqual constraints

X != Y

4

public class NotEqual extends AbstractConstraint {
 private final IntVar x, y;

 @Override
 public void post() {
 if (y.isFixed())
 x.remove(y.min());
 else if (x.isFixed())
 y.remove(x.min());
 else {
 x.propagateOnFix(this);
 y.propagateOnFix(this);
 }
 }

 @Override
 public void propagate() {
 if (y.isFixed())
 x.remove(y.min());
 else y.remove(x.min());
 }
}

AllDifferent by Binary Decomposition

5

∀i, j ∈ {1..n} : i ≠ j ⟹ xi ≠ xj

NotEqual

public class AllDifferentBinary extends AbstractConstraint {

 private IntVar[] x;

 public AllDifferentBinary(IntVar... x) {
 super(x[0].getSolver());
 this.x = x;
 }

 @Override
 public void post() {
 Solver cp = x[0].getSolver();
 for (int i = 0; i < x.length; i++) {
 for (int j = i + 1; j < x.length; j++) {
 cp.post(new NotEqual(x[i], x[j]));
 }
 }
 }
}

AllDifferent: Forward Checking

6

What happens when a variable gets fixed?

7

Filtering: When a variable gets fixed, 
its value is removed from the domains of the other variables.

This filtering is called forward checking (FWC).

1,2,3,
4,5 2 1,2,3,

4,5 1 1,2,3,
4,5,6 6,7,8 3

6,7,
8,9 6,7,8

x1 x2 x3 x4 x5 x6 x7 x8 x9

What happens when a variable gets fixed?

8

‣How much time does it take to filter the binary decomposition?

‣Assume x2 gets fixed to 2: we must remove 2 for x8 and x9.
‣The decomposition considers all the n – 1 NotEqual constraints on x2: 

so ϴ(n) time is caused per newly fixed variable.
‣Aim: Spend time proportional to the number of unfixed variables, 

and achieve the same propagation, but with only one filtering algorithm, 
working on all n variables.

4 2 6 7 3 8 9 {1,2,5} {1,2,5}

x1 x2 x3 x4 x5 x6 x7 x8 x9

Forward Checking

9

‣Separate the indices of fixed & unfixed variables in a sparse set (as for Sum)
‣For each index i (of a variable X[i]) in the set NotFixed:

– If X[i] was fixed to some value v, then:
• Remove v from the domain of all other variables in NotFixed
• Move index i to the set Fixed

• time instead of timeΘ(#NotFixed2) Θ(n2)

Fixed NotFixed

How to do that?

10

1. Use a global constraint, and
2. Separate the indices of fixed & unfixed variables in a sparse set (as for Sum):

– When a variable was fixed to a value v: 
iterate over the unfixed variables in order to remove v from their domains.

– Use a StateInt nFixed, denoting the number of fixed variables, 
in order to implement a stateful sparse set.

int nF = nFixed.value();
for (int i = nF; i < x.length; i++) {
 int idx = fixed[i];
 IntVar y = x[idx];
 if (x[idx].isFixed()) {
 // filter the unfixed variables
 // swap the variables:
 fixed[i] = fixed[nF];
 fixed[nF] = idx;
 nF++;
 }
}
nFixed.setValue(nF);

Where do we spend the most time?

11

‣Experiment on 15-queens: 
on average, 10.86 of 15 variables are fixed in the scope of AllDifferent.
‣So it is important to avoid considering constraints on fixed variables.

At the bottom of the
search tree

Where most of the
variables are fixed

Does it help?

12

‣15-queens problem: 37,086,270 nodes and 2,279,184 solutions:
– A global constraint, filtered by FWC, using a sparse set: 43 seconds.
– Binary decomposition: 63 seconds (+46%).

‣What if more variables: same speedup?

0
17.5
35

52.5
70

Time

FWC
Decomposition

Does it help?

13

‣30-queens problem: 36 seconds vs 69 seconds (+91%).

‣60-queens problem (looking for first 105 solutions): 18s vs 51s (+180%)

0
17.5
35

52.5
70

FWC
Decomposition

0
15
30
45
60

Time

FWC
Decomposition

AllDifferent: Feasibility Check

14

How good is the filtering of the decomposition? Weak!

15

‣Assume this is a Sudoku row: are only the red values to be filtered?  
One can filter much more …

‣The decomposition and a global constraint with FWC cannot detect
inconsistency for:

1,2,3,
4,5 2 1,2,3,

4,5 1 1,2,3,
4,5,6 6,7,8 3 6,7,8,9 6,7,8

∀i, j ∈ {1..n} : i ≠ j ⟹ xi ≠ xj

x1 x2 x3 x4 x5 x6 x7 x8 x9

1,2 1,2 1,2

x1 x2 x3

AllDifferent: Feasibility Check (Régin 1994)

16

‣x0 ∈ {3,4}
‣x1 ∈ {1}
‣x2 ∈ {3,4}
‣x3 ∈ {0}
‣x4 ∈ {3,4,5}
‣x5 ∈ {5,6,7}
‣x6 ∈ {2,9,10}
‣x7 ∈ {5,6,7,8}
‣x8 ∈ {5,6,7}

0

x

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10

Step 1: Build the
Variable-Value

(Bipartite) Graph

Variables Values

AllDifferent: Feasibility Check

17

x
val

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10
M-free

M-free node = a node not in M

There is a solution to AllDifferent([x0,…,x8])
iff there exists a maximum matching M
of size n=9 in the variable-value graph.

Definition: matching = set of edges without common nodes.

Our example constraint is thus feasible!

How to find a maximum matching?

18

‣Start with a possibly sub-optimal matching and try & augment it.
‣Greedy: Iterate over the variables and fix to the first still possible value.

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10

The greedy
algorithm fails to
match this node

How to augment a matching?

19

1. Direct the edges for the greedy matching M:
•← for edges in M
•→ for edges not in M

2. Search for a path (by DFS) that 
starts from an M-free variable node  
and ends at an M-free value node. 
Such a path is called an alternating path.

3. If an alternating path exists, 
then flip the direction of its arcs, 
else the matching is already maximum.

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10

DFS start

M is a maximum matching
iff no alternating path exists.

How to find a maximum matching?

20

‣Now our example matching is maximum and  
we know that our example constraint is feasible
since that maximum matching has n=9 edges.
‣What are the edges (domain values) to remove?

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10

To find a maximum matching:
‣ Start with any matching (e.g., the empty matching).
‣ Iteratively augment the matching via alternating paths.
‣ Stop when no more alternating path exists.

AllDifferent:
Domain Consistency =

Filtering all Inconsistent Values

21

Filtering AllDifferent

22

‣ Idea A:
– Enumerate all the maximum matchings, 

and collect (by set union) all their edges.
– Delete any edge that is not in the final collection.

Is this a practical approach? 🤔

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10

Remove all the edges that do not belong to some maximum matching
that is of size n (i.e., covers all the variables): domain consistency.

An important theorem can save us …

23

‣ Idea B: Apply a theorem by Berge (1970):
Claude Berge 1926–2002

An edge belongs to some but not all maximum matchings iff,
for an arbitrary maximum matching M, it belongs to
either an even-length alternating path that starts at an M-free node (case 1),
or an even-length alternating cycle (case 2).

Why is this theorem important?
Because we now show that our problem boils down to

detecting cycles in a directed graph.
What algorithm can be used to detect all cycles?

Berge Theorem: Case 1

24

‣An edge belongs to some maximum matching if, for an arbitrary maximum
matching M, it belongs to an even-length alternating path that starts 
at an M-free node.

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10
M-free

Edge (6,10)?

You can convince yourself that
flipping the status of the edges on

this path creates another maximum
matching, with the edge (6,10)

instead of the edge (6,2).

Even-length alternating paths of more than
2 edges can occur in general.

Berge Theorem: Case 2

25

‣An edge belongs to some maximum matching if, for an arbitrary maximum
matching M, it belongs to an even-length alternating cycle.

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10

Edge (2,3)? You can convince yourself that
flipping the status of the edges on

this cycle creates another maximum
matching, with the edges (2,3) and (0,4)

instead of (2,4) and (0,3).

Filtering AllDifferent: Domain Consistency

26

edge e belongs to some maximum matching iff
• e belongs to a particular maximum matching M
• e belongs to an even-length alternating path

that starts at an M-free node
• e belongs to an even-length alternating cycle

Let M be a maximum matching:

or

We can treat the two cases (path & cycle) of Berge’s theorem as one,
namely by transforming the graph!

Berge Theorem: Merge the Two Cases

27

Transformation:
Direct the graph (like above) and add a dummy node,
with an incoming arc from every M-free value node
and an outgoing arc to every value node in M.

nodes id

x
val

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10

dummy

• Every directed cycle that contains an arc
from a node in M to an M-free node
corresponds to an even-length alternating path w.r.t. M.
(Using dummy node = case1)

Now:

Berge Theorem: Merge the Two Cases

28

Transformation:
Direct the graph (like above) and add a dummy node,
with an incoming arc from every M-free value node
and an outgoing arc to every value node in M.

nodes id

x
val

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10

dummy

• Every directed cycle that contains an arc
from a node in M to an M-free node
corresponds to an even-length alternating path w.r.t. M.
(Using dummy node = case 1)

• Every directed cycle that does not contain an arc
from a node in M to an M-free node
corresponds to an even-length alternating cycle w.r.t. M.
(Not using dummy node = case2)

Now:

Berge Theorem: Merge the Two Cases

29

nodes id

x
val

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10

dummy

An edge e belongs to some maximum matching iff
either e belongs to the initial matching M
or e belongs to some cycle in the transformed graph for M.

Corollary (Régin’s idea) :

All cycles can be computed in time linear
in the size of the graph,
by finding all strongly connected components
with the Kosaraju or Tarjan algorithm.

Domain Consistency (Régin 1994)

30

All nodes belonging to some directed cycle can be identified
by finding all strongly connected components (SCC).

11

10

11

9

8

6

1

5

6

2

3

1

11

11

7

6

6

4

1

1

1

SCC IDs

•Compute a matching M that covers X in the variable-value graph.
•Remove all the edges (x,a) (i.e., delete all a from all D(x))

where (x,a) is not in M and a & x belong to two different SCCs
of the transformed graph for M.

Filtering algorithm for AllDifferent(X):

The black arcs connect different SCCs:
those not corresponding to the matching M

must be removed.

AllDifferent Filtering: Summary

31

X values node IDs SCC IDs X

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

11

10

11

9

8

6

1

5

6

2

3

1

11

11

7

6

6

4

1

1

1

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10

step 1:
maximum matching

step 2:
directed graph

step 3:
strongly connected components

step 4:
filtering

values

Implementation Considerations:
Backtracking and Incremental Updates

+
Explanations on the programming assignment

32

Incrementality of the Filtering

33

When called:
• Remove the edges that represent already filtered values.
• Recompute a maximum matching if necessary:  
if edges of the maximum matching were removed,  
then augment this matching (see above).

• Re-filter.

?

? ?

?

x[0]=0

x[1]!=2

x[0]!=0

x[0]=1 x[0]!=1

?

x[2]=3 x[2]!=3

M
Remove edges of M that have

disappeared and start
alternating path from here in

order to compute M’

M’ is still valid when backtracking,
so there is no need to augment it

(backtrack = adding values to domains)

…

👩💻 Assigment 🎁

34

public class MaximumMatching {

 public MaximumMatching(IntVar... x);

 public int compute(int[] result);
}

Graph API (👩💻 assigment)

35

nodes idval

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10

dummy

Graph g = new Graph() {
 @Override public int n() { return nNodes; }
 @Override public Iterable<Integer> in(int idx) { return in[idx]; }
 @Override public Iterable<Integer> out(int idx) { return out[idx]; }
 };

public static int[] stronglyConnectedComponents(Graph graph);

🎁

AllDifferent Implementation (🧑💻 assignment)

36

public class AllDifferentDC extends AbstractConstraint {
 private IntVar[] x;
 private final MaximumMatching maximumMatching;
 private final int nVar;
 private int nVal;
 // residual graph
 private ArrayList<Integer>[] in;
 private ArrayList<Integer>[] out;
 private int nNodes;
 private Graph g = new Graph() {

 @Override public int n() { return nNodes; }
 @Override public Iterable<Integer> in(int idx) { return in[idx]; }
 @Override public Iterable<Integer> out(int idx) { return out[idx]; }
 };
 private int[] match;
 private boolean[] matched;
 private int minVal;
 private int maxVal;
}

Residual Graph

in[i] = in adjacent nodes

AllDifferent Implementation (👩💻 assignment)

37

public class AllDifferentDC extends AbstractConstraint {
 private IntVar[] x;
 private final MaximumMatching maximumMatching;
 private final int nVar;
 private int nVal;
 // residual graph
 private ArrayList<Integer>[] in;
 private ArrayList<Integer>[] out;
 private int nNodes;
 private Graph g = new Graph() {

 @Override public int n() { return nNodes; }
 @Override public Iterable<Integer> in(int idx) { return in[idx]; }
 @Override public Iterable<Integer> out(int idx) { return out[idx]; }
 };
 private void updateGraph() {// TODO}
 public void propagate() {
 // TODO Implement the filtering
 // hint: use maximumMatching.compute(match) to update the maximum matching
 // use updateRange() to update the range of values
 // use updateGraph() to update the residual graph
 // use GraphUtil.stronglyConnectedComponents to compute SCC's
 }

in[i] = in adjacent nodes

Time Complexity

38

‣ , where:
– m is the number of edges,
– n is the number of variables 

(use the Hopcroft-Karp algorithm for finding a maximum matching).
‣The strongly connected components are computed in O(m) time.

– Fun fact: in practice, most of the time is spent there because just a few
iterations are needed to retrieve (if needed) the maximum matching.

O(m n)

Generalizing the AllDifferent Constraint

39

Global Cardinality Constraint (GCC)

40

Régin, Jean-Charles. "Arc consistency for global cardinality constraints with costs." International Conference on Principles and Practice of Constraint Programming. 1999.

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10

0 ≤ #{i ∣ xi = 4} ≤ 2

1 ≤ #{i ∣ xi = 3} ≤ 1

1 ≤ #{i ∣ xi = 5} ≤ 3

0 ≤ #{i ∣ xi = 6} ≤ 1

0 ≤ #{i ∣ xi = 7} ≤ 1

0 ≤ #{i ∣ xi = 8} ≤ 1
0 ≤ #{i ∣ xi = 9} ≤ 1

0 ≤ #{i ∣ xi = 10} ≤ 1

1 ≤ #{i ∣ xi = 2} ≤ 1

1 ≤ #{i ∣ xi = 1} ≤ 1

1 ≤ #{i ∣ xi = 0} ≤ 1

GCC Feasibility Check = Maximum Flow with Cardinality

41
Régin, Jean-Charles. "Arc consistency for global cardinality constraints with costs." International Conference on Principles and Practice of Constraint Programming. 1999.

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

9

10

0 ≤ #{i ∣ xi = 4} ≤ 2

1 ≤ #{i ∣ xi = 3} ≤ 1

1 ≤ #{i ∣ xi = 5} ≤ 3

0 ≤ #{i ∣ xi = 6} ≤ 1

0 ≤ #{i ∣ xi = 7} ≤ 1

0 ≤ #{i ∣ xi = 8} ≤ 1
0 ≤ #{i ∣ xi = 9} ≤ 1

0 ≤ #{i ∣ xi = 10} ≤ 1

1 ≤ #{i ∣ xi = 2} ≤ 1

1 ≤ #{i ∣ xi = 1} ≤ 1

1 ≤ #{i ∣ xi = 0} ≤ 1

