Constraint
Programming

The AllDifferent Constraint

AllIDifferent: Binary Decomposition

AllDifferent

— Scope:
* An array x of n variables with the same domain, D, for each variable x..
e D satisfies IDI = n.

— Requirement:

Vij e {l.n}i#j = x #x

Can be modeled

using n(n-1)/2 = O(n?)
NotEqual constraints

XI=Y

public class NotEqual extends AbstractConstraint {
private final IntVar x, v;

@Override
public void post() {
1if (y.isFixed())

X.remove(y.min());
else 1f (x.1sFixed())

y.remove(x.min());
else {

X .propagateOnFix(this);
v.propagateOnFix(this);

}

@Override
public void propagate() {
1if (y.1isFixed())
Xx.remove(y.min());
else y.remove(x.min());

’Mini

AlIDifferent by Binary Decomposition
Viijjell.ntiiFz] = x5, #x

public class AllDifferentBinary extends AbstractConstraint {

private IntVar[] Xx;

public AllDifferentBinary(IntVar... x) {
super (x[0].getSolver());
this.x = x;

}

@Override
public void post() {
Solver cp = x[0].getSolver();
for (int i = 0; i < x.length; i++) {
for (int §j = i + 1; j < x.length; j++) {
cp.post(new NotEqual(x[i1], x[]]1));
}

Ao

AllDifferent. Forward Checking

What happens when a variable gets fixed? fin

Filtering: When a variable gets fixed,
its value is removed from the domains of the other variables.

6,7/,

X1 X2 X3 X4 X5 X6 X7 Xs8 X9
This filtering is called forward checking (FWC).

What happens when a variable gets fixed?

>» How much time does it take to filter the binary decomposition?

4 2 6 7 3 8 9 ({1,2,5}{1,2,5}

X1 X2 X3 X4 X5 X X7 Xg Xo
» Assume Xz gets fixed to 2: we must remove 2 for xs and Xo.

> The decomposition considers all the n — 1 NotEqual constraints on Xo:
so ©(n) time Is caused per newly fixed variable.

> Aim: Spend time proportional to the number of unfixed variables,
and achieve the same propagation, but with only one filtering algorithm,
working on all n variables.

Forward Checking Lo

» Separate the indices of fixed & unfixed variables in a sparse set (as for Sum)
> For each index i (of a variable X[i]) in the set NotFixed:
— If X[i] was fixed to some value v, then:
* Remove v from the domain of all other variables in NotFixed
* Move index i to the set Fixed

. O(#NotFixed?) time instead of ®(n?) time

How to do that”? -

1. Use a global constraint, and

2. Separate the indices of fixed & unfixed variables in a sparse set (as for Sum):

—When a variable was fixed to a value v:
iterate over the unfixed variables in order to remove v from their domains.

— Use a Statelnt nFixed, denoting the number of fixed variables,
In order to implement a stateful sparse set.

int nF = nFixed.value();
for (int i = nF; i < x.length; i++) {
int idx = fixed[i];
IntVar y = x[idx];
if (x[idx].isFixed()) {
// filter the unfixed variables
// swap the variables:
fixed[i] = fixed[nF];
fixed[nF] = idx;
nF++;
+
s

nFixed.setValue(nF):
10

Where do we spend the most time”?

At the bottom of the
search tree

Where most of the

variables are fixed

> Experiment on 15-queens:
on average, 10.86 of 15 variables are fixed in the scope of AllDifferent.

> S0 it Is important to avoid considering constraints on fixed variables

11

’Mini

Does it help?

> 15-queens problem: 37,086,270 nodes and 2,279,184 solutions:

— A global constraint, filtered by FWC, using a sparse set: 43 seconds.
— Binary decomposition: 63 seconds (+46%).

B FWC
B Decomposition

> \What if more variables: same speedup?

12

’Mini

Does it help? Lo

» 30-queens problem: 36 seconds vs 69 seconds (+91%).

B FWC
B Decomposition

» 60-queens problem (looking for first 10° solutions): 18s vs 51s (+180%)

B FWC
B Decomposition

13

14

AllIDifferent: Feasibility Check

_How good is the filtering of the decomposition”? Weak! 7.

Vije(l.n)i#j = x#x

Assume this is a Sudoku row: are only the red values to be filtered?
One can filter much more ...

X2 X3 X4 X5 X X7 Xg Xog

> The decomposition and a global constraint with FWC cannot detect

Inconsistency for:
. 1’2 .
X1 X2 X3

15

AlIDifferent: Feasibility Check (Regin 1994)

> Xo € {3,4}

> X1 € {1}

> X2 € {3,4}

> X3 € {O}

> X4 € {3,4,5)

> X5 € {5,6,7}

> X6 € {2,9,10}
> X7 € {5,6,7,8}
> Xg € {5,6,7}

16

Step 1:Build the

Variable-Value
(Bipartite) Graph

—

’Mini

AllDifferent: Feasibility Check £

val

X (O

Q. AO

Our example constraint is thus feasible! ‘ \(‘
(C

|
|

' There is a solution to AllDifferent([xo,...,Xs])
Iff there exists a maximum matching ,
of size n=9 In the variable-value graph.

1 |

M-free node = a nhode notin M

Definition: matching = set of edges without common nodes.
17

How to find a maximum matching?

» Start with a possibly sub-optimal matching and try & augment it.
> Greedy: lterate over the variables and fix to the first still possible value.

The greedy
algorithm fails to
match this node

18

’Mini

How to augment a matching?

1. Direct the edges for the greedy matching M:

» — for edges in M
» = for edges not in Vi

2. Search for a path (by DFS) that
starts from an M-free variable node
and ends at an M-free value node.
Such a path is called an alternating path.

3. If an alternating path exists,
then flip the direction of its arcs,
else the matching is already maximum.

IS @ maximum matching
Iff no alternating path exists.

19

o
o @
0 O
(- 4‘:‘
0_710
O/
0 /0
o

)

N
\

)
@

’Mini

How to find a maximum matching?

To find 2 maximum matching:
> Start with any matching (e.g., the empty matching).
> |teratively augment the matching via alternating paths
> Stop when no more alternating path exists.

> Now our example matching is maximum and
we know that our example constraint is feasible
since that maximum matching has n=9 edges.

> What are the edges (domain values) to remove?

20

’Mini

21

AlIDifferent:
Domain Consistency =
Filtering all Inconsistent Values

Filtering AllDifferent

Remove all the edges that do not belong to some maximum matching
that is of size n (i.e., covers all the variables): domain consistency.

» |[dea A:

— Enumerate all the maximum matchings,
and collect (by set union) all their edges.

— Delete any edge that is not in the final collection.

Is this a practical approach? ¢

22

’Mini

An important theorem can save us ... fin

> |[dea B: Apply a theorem by Berge (1970)

Claude Berge I 92 6—2 002

An edge belongs to some but not all maximum matchlns |ff - W
~ for an arbitrary maximum matching IV, it belongs to |
either an even-length alternating path that starts at an \I-free node (case 1),

ﬂ or an even-length alternating cycle (case 2). W

Why is this theorem important?
Because we now show that our problem boils down to

|
!
I

What algorithm can be used to detect all cycles?

23

Berge Theorem: Case 1

’Mini

An edge belongs to some maximum matching if, for an arbitrary maximum
matching M, it belongs to an even-length alternating path that starts

at an M-free node.

24

You can convince yourself that
flipping the status of the edges on
this path creates another maximum
matching, with the edge (6,10)
instead of the edge (6,2).

Even-length alternating paths of more than
2 edges can occur in general.

Berge Theorem: Case 2 £

An edge belongs to some maximum matching if, for an arbitrary maximum
matching M, it belongs to an even-length alternating cycle.

Edge (2,3)? You can convince yourself that
flipping the status of the edges on
this cycle creates another maximum
matching, with the edges (2,3) and (0,4)
instead of (2,4) and (0,3).

25

Filtering AllDifferent: Domain Consistency

260

Let M be a maximum matching:

edge e belongs to some maximum matching i1ff

* ¢ belongs to a particular maximum matching M

e ¢ belongs to an even-length alternating path
that starts at an M-free node

* ¢ belongs to an even-length alternating cycle

or

We can treat the two cases (path & cycle) of Berge’s theorem as one,
namely by transforming the graph!

’Mini

Berge Theorem: Merge the Two Cases

val
Transformation: .
Direct the graph (like above) and add a dummy node, ‘
with an incoming arc from every |Vi-free value node . ‘
and an outgoing arc to every value node in V. \(‘
Now:)
| | O X,

- Every directed cycle that contains an arc /‘
from a node in M to an M-free node . "
corresponds to an even-length alternating path w.r.t. M. /
(Using dummy node = case1) . ‘

,l/‘
~47
QS

/"/
/ "\

27

’Mini

Berge Theorem: Merge the Two Cases

Transformation:

Direct the graph (like above) and add a dummy node,
with an incoming arc from every |Vi-free value node
and an outgoing arc to every value node in V.

Now:

- Every directed cycle that contains an arc
from a node in M to an M-free node
corresponds to an even-length alternating path w.r.t. M.
(Using dummy node = case 1)

- Every directed cycle that does not contain an arc
from a node in M to an M-free node
corresponds to an even-length alternating cycle w.r.t. M.
(Not using dummy node = case2)

28

’Mini

Berge Theorem: Merge the Two Cases

Corollary (Régin’s idea) :

An edge e belongs to some maximum matching iff
either e belongs to the initial matching VI
or e belongs to some cycle in the transformed graph for M.

All cycles can be computed in time linear

In the size of the graph,

by finding all strongly connected components
with the Kosaraju or Tarjan algorithm.

29

’Mini

Domain Consistency (Regin 1994)

All nodes belonging to some directed cycle can be identified
by finding all strongly connected components (SCC).

Filtering algorithm for AllDifferent(X):

e Compute a matching ' that covers X in the variable-value graph.

e Remove all the edges (x,a) (i.e., delete all @ from all D(x)
where (x,a) is not in '/ and a & x belong to two different SCCs
of the transformed graph for '.

The black arcs connect different SCCs:
those not corresponding to the matching

must be removed.

30

SCC IDs

’Mini

AllIDifferent Filtering: Summary

31 step 1: step 2: step 3:
maximum matching directed graph strongly connected components

Ao

32

Implementation Considerations:

Backtracking and Incremental Updates
+

Explanations on the programming assignment

Incrementality of the Filtering o

When called:
e Remove the edges that represent already filtered values.
e Recompute a maximum matching 1f necessary:
1f edges of the maximum matching were removed,

then augment this matching (see above).
e Re-f1ilter.

x[0]=0 / V[O]!=O

4

Remove edges of I that have

disappeared and start / x[1]= X[°]=/ \[O]’=1
alternating path from here in ° 0

order to compute o

" is still valid when backtracking,
so there is no need to augment it
(backtrack = adding values to domains)

x[2]=/ \<[2]!=3

33

£a Assigment

public class MaximumMatching {

public MaximumMatching(IntVar... X);

public int compute(int[] result);

34

Ao

Graph API (fa assigment) A

Graph g = new Graph() {
@Override public int n() { return nNodes; }
@Override public Iterable<Integer> in(int idx) { return in[idx]; }
@Override public Iterable<Integer> out(int idx) { return out[idx]; }

val nodes id

4

public static int[] stronglyConnectedComponents(Graph graph);

35

AllIDifferent Implementation (5 assignment)

public class AllDifferentDC extends AbstractConstraint <
private IntVar[] x;
private final MaximumMatching maximumMatching;
private final 1int nVar;
private int nVal,; in[i] = in adjacent nodes
// residual graph
private ArraylList<Integer>[] in;
private ArrayList<Integer>[] out;
private 1int nNodes; Residual Graph
private Graph g = new Graph() {

@Override public int n() { return nNodes; *}
@Override public Iterable<Integer> in(int idx) { return in[idx]; }
@Override public Iterable<Integer> out(int idx) { return out[idx]; }
¥
private int[] match;
private boolean[] matched;
private int minVal,;
private int maxVal,;

36

Ao

AllDifferent Implementation (£ assignment)

public class AllDifferentDC extends AbstractConstraint {
private IntVar[]l x;
private final MaximumMatching maximumMatching;
private final int nVar;
private int nVal;
// residual graph in[i] = in adjacent nodes
private ArrayList<Integer>[] in;
private ArrayList<Integer>[] out;
private int nNodes;
private Graph g = new Graph() {

@Override public int n() { return nNodes; }
@Override public Iterable<Integer> in(int idx) { return in[idx]; }
@Override public Iterable<Integer> out(int idx) { return outl[idx]; }

b
private void updateGraph() {// TODO}
public void propagate() {

// TODO Implement the filtering

// hint: use maximumMatching.compute(match) to update the maximum matching

// use updateRange() to update the range of values
// use updateGraph() to update the residual graph
// use GraphUtil.stronglyConnectedComponents to compute SCC's

37

’Mini

Time Complexity

- O(mﬁ), where:

—m is the number of edges,

—n Is the number of variables
(use the Hopcroft-Karp algorithm for finding a maximum matching).

> The strongly connected components are computed in O(m) time.

— Fun fact: in practice, most of the time is spent there because just a few
iterations are needed to retrieve (if needed) the maximum matching.

38

39

Generalizing the AllDifferent Constraint

Global Cardinality Constraint (GCC)

() 1<#{i|x;=0}<1

X</ .
O O 1<#{i|x=2}<1
]

y)

O é,‘ <#{i|x =3} <

Q/"C 0<#[i|x =4} <

I <#{i|x=5)<3

)7 /,5‘ O<#{i|x,=6}<1

Q\//’)C 0<#{i|x=7}<1

ST

Q’?}: () 0<#{i|x=8)<1
O () 0<#i|x=9}<1

(H)O<#{i|x,=10} <1

Régin, Jean-Charles. "Arc consistency for global cardinality constraints with costs." International Conference on Principles and Practice of Constraint Programming. 1999.

40

’Mini

GCC Feasibility Check = Maximum Flow with Cardinality 7.

1 <#i|x;,=0} <1
1 <#i|x=1}<1
1 <#{i|x=2}<1
1 <#i|x,=3}<1
O<#{i|x =4} <2
| <#{i|x;, =5} <3
O<#i|x,=6}<1
O0<#i|x=7} <1
0<#{i|x=8}<1
O0<#i|x,=9}<1
0<#{i|x =10} <1

Régin, Jean-Charles. "Arc consistency for global cardinality constraints with costs." International Conference on Principles and Practice of Constraint Programming. 1999.

41

