Cumulative
Scheduling with CP

Scheduling problems i

Scheduling = “Allocating scarce resources to activities over time” (Baker, 1974)
Assets of CP for solving scheduling problems:

> high-level flexible modeling abstractions for scheduling problems
(activities, resource constraints, etc)

» strong filtering algorithms to prune the search tree

» good variable selection strategies during the search

Ex: File download from observation satellite

> Activities (aka jobs): file transfers

> Resources:

—download channels: limited number of simultaneous downloads

—memory banks: cannot simultaneously download files on the same memory bank
> Objective:

—download as much data as possible within a given time window

’Mini

Ex: Planning Philae mission on comet 67P £

> Activities: scientific experiments

ROMAP

» Resources:

e batteries: threshold on the instantaneous energy requirement

e memory. experiments produce data; transfers are only possible when the spacecraft
Rosetta (from which the lander module Philae is released) is visible

» Objective: maximize the lifespan of the batteries

[Hebrard, ACP Summer School 2017]

4

Ex: Train scheduling with interlocking fin

> Activities: trains going through a station, each with a set of possible routes
» Resources: track segments (only one train at a time, to avoid accidents)
> Objective: maximize the train throughput during a time window

S1

T
L T9 T10 1111

[Cappart & Schaus, CPAIOR 2017]

Ex: Caster scheduling for steel production

> Activities: process pockets of molten metal (heat)
> Resources: converter, degasser, caster
> Objective: minimize the makespan

1 2 N)
T e) g Comvrtercapaciy 2
— T ,
EFREEEEEEEEEERE NN] jemensport,
‘ 1 |u‘ 3 - _ 2 Degassers,
each of capacity 2
L 2 _
H Bl CNE Transport
B infi capacity
B 07]
4 Casters, L [R B
each has capacity 1
1 z I
- .

[Gay & Schaus, CP 2014]

’Mini

Decomposition of Cumulative

Attributes of a cumulative activity

sli] dIi] e[l] si] ~e[i]

r[|] activity i For this activity i:
sli] € [0,7] : start time
V4 8 9 10

d[i] = 4 : duration

r[i] = 2 : resource requirement
eli] = s[i] + d[i] (a view):
activity i ends just before e[i]

’Mini

‘Cumulative constraint [Aggoun & Beldiceanu, 1993] Ao

public Cumulative(IntVar[] s, Int[] d, Int[] r, int C resource

capacny
resource
requirement

Cumulative constraint

At any time t, the total resource requirement by the activities running at ¢
does not exceed the resource capacity C:

Vi : Z r| <C

10

’Mini

Reminder: Reified constraints

»b = x <y meansthatbistrueiff x <y
»D(x) ={1,2,3} D(y)={0,1,5} D(b)={talse, true}

11

Reminder: Relfied constraints

»b = x <y meansthatbistrueiff x <y

> D(x) ={1,2,3} D(y)={0,%5} D(b)={false, tq

12

Reminder: Relfied constraints

»b = x <y meansthatbistrueiff x <y

>D(x) ={1,2,3} D(y)={E

13

1,5} D(b)={faise, true}

Decomposition of Cumulative £

Let A be the set of activities and H the time horizon of the project:

Vi e [0.H) : Z rl < C

€A : 5;<1<e;
 Reify whether an activity runs at time t, encoding false as O and frue as 1:

VieA:Vie|0H): 0, € {01} Ao, =5, <1<e¢

e Enforce that the cumulated requirement over all activities is always at most
the capacity C:

Vi€ [0.H):) 0,1, <C
1EA

14

Decomposition of Cumulative fin

Consider the following example, where s[i] = {4,5,6}:

_ . _ _ Reified constraints for7/ at t = 6:
s[i] si] eli] efi]

sli] < 5slil =6 <eli] Lelil =0, =1
:
I — reified constraints

Reified constraints forratt = 7:

s[i] <3[1<7<8=c¢lil <eli] =0, = 1

e |f activity / starts late (at 6), then it overlaps the interval [6,7]
e |f activity / ends early (at 8), then it overlaps the interval [6,7]

reified constraints

15

How does the decomposition work?

C=1 (i.e., the two activities cannot overlap)
r{j]=1 I
]

sli] s[i] eli] eli]

9 10 11 12

sli] € 14,6], e|i] € [8,10], d[i] = 4

sljl € [4,8], elj] € [8,12], dlj] =4

Reified constraints foriatt=6and t = 7:

s[i] <5[il=6<6<8=c¢[i]<elil =0, =1
s[i1<5lil=6<T7<8=¢li]<elil =0, =1

16

’Mini

How does the decomposition work? fin

C=1 (i.e., the two activities cannot overlap)
r{j]=1 I
]

sli] s[i] eli] eli]

12

Sum constraint at t = 6:

Sum constraintatt =7:

0 - 1] +0;7 - rjil<lesl + 057 < | & Oj7 = 0 slj] > 7, as e|j] € [3,12]

17

How does the decomposition work? fin

C=1 (i.e., the two activities cannot overlap)
r{j]=1 I

sli] s[i] eli]

18

eli]

sljl1 € {8} and ¢[j] € {12}

Reified constraints forjatt =8, 9, 10, and 11:
0;8 = 0jg = 0jj9 = 0j1; = 1
Sum constraint at t = 8:

Sum constraintatt=9:

Drawback of the decomposition

» Discretization of time + reified constraint at each time
> Heavy fixpoint computation: runtime proportional to H

>»H =10 hours, n = 10 activities
> Time unit = 1 minute: 6,000 variables and 600 sum constraints @&
> Time unit = 1 second: 360,000 variables and 36,000 sum constraints @

19

’Mini

TimeTable filtering

We would prefer, for n activities:
> To limit the number of variables and make sure it depends only on n
> To compute the fixpoint with a time complexity that depends only on n

TimeTable filtering is used to do the same filtering but faster: O(n?) time.

20

TimeTable Filtering for Cumulative:
Checking Feasibility with a Profile

Checker

Assume for now that all the start variables are fixed:
» How do we check if a Cumulative constraint is satisfied?
> What is the time complexity?

The cumulated profile must

always be at most the capacity.

22

’Mini

Checker: Approach ..

> For n activities, the cumulated profile has at most 2n rectangles.

> Build the cumulated profile
and check that none of its rectangles exceeds the capacity.

23

Checker: Activity Events fin

> Public class Event(int t, int h)

» For start event: t = start,
h = requirement; for end event:
t = end, h = -requirement

> Create events: Event(0,1),
Event(4,-1), Event(1, 2), Event(3,-2),
Event(3,1), Event(5,-1), Event(4,2),
Event(7,-2)

> Sort events following time:
Event(0,1), Event(1, 2), Event(3,-2),
Event(3,1), Event(4,-1), Event(4,2),
Event(5,-1), Event(7,-2)

24

Checker: Activity Events L

> We iterate over events and compute
the cumulated height at all times t

> [t takes O(n) time to process all
events

> Between two adjacent times with
different cumulated heights a new
rectangle of the profile is created.

> |t takes O(n log n) time to sort all
events

» So the overall time complexity of the
checker is O(n log n)

25

Let's code this algorithm

public class Profile {

static class Event {
private final int t;
private final int h;

}

static class Rectangle {
private final int start;
private final long dur;
private final int height;
private final int end;

}

private final Rectangle[] profileRectangles;

public Profile(Rectangle... rectangles) {
// compute the profile rectangles in two steps
// stepl: create timeline
// step2: sweep
this.profileRectangles = profile.toArray(new Rectangle[0]);

260

’Mini

Step 1: Create timeline £

public class Profile {
private final Rectangle[] profileRectangles;
public Profile(Rectangle... rectangles) {

// stepl: create timeline (slide before)
ArrayList<Rectangle> profile = new ArrayList<Rectangle>();

Event[] events = new Event[2 * rectangles.length + 2];

for (int i = 0; i < rectangles.length; i++) { Two dummy
Rectangle r = rectangles[i]; entries
events[i] = new Event(r.start, r.height);// start events
events[rectangles.length + i] = new Entry(r.end, -r.height); //j/end events

}

points[2 * rectangles.length] = new Event(Integer.MIN VALUE, 0); //dummy start

points[2 * rectangles.length + 1] = new Event(Integer.MAX VALUE, 0); //dummy end

Arrays.sort(events);
// step2: sweep (next slides)
this.profileRectangles = profile.toArray(new Rectangle[0]);

27

Step 2: Sweep

28

public class Profile {

private final Rectangle[] profileRectangles;

public Profile(Rectangle...

rectangles) {

// stepl: create timeline (previous slide ..)

// step2: sweep
int sweepHeight = 0;

int sweepTime = points[0].key;

for (Event e : events)
int t = e.key;
int h = e.value;

{

if (t != sweepTime) {
profile.add(new Rectangle(sweepTime, t - sweepTime,

sweepTime = t;

}
sweepHeight += h;

}
this.profileRectangles

profile.toArray(new Rectangle[0]);

sweepHeight, t));

’Mini

TimeTable Filtering for Cumulative:
Filtering Time Bounds

Activity: Definitions

At any time t, the total requirement by the activities running at ¢
does not exceed the capacity C.

EET

s[i] eli]

|

s[i] e[i]

}

§fi] gii]
30 The mandatory part of activity i only exists if e[i] > sli].

Whatever the value of si],
activity 1 will run during
its mandatory part.

’Mini

Mandatory profile

In practice, during search, not all the start variables are fixed yet,
so there is some flexibility when activities can be scheduled:

Mandatory part: we are sure that this activity will run during
this time interval whatever its eventual start time.
Not every activity has a mandatory part.

The mandatory profile is optimistic,
as it is built solely from the mandatory parts of the activities.

31

’Mini

Timetable filtering L

Update of the lower bound: update the minimum start time to the earliest time
where it is not in conflict with the mandatory profile.

Now with mandatory part:
update mandatory profile!

Time complexity?

O(n) time per activity since the mandatory
profile has O(n) intervals: O(n2) time overall.

30 earliest start

Be careful with activities with mandatory part fi

Do not push the start of an activity beyond its mandatory part (which would
be infeasible), because the latter is in the mandatory profile and thus proven
to be feasible.

update the earliest start to A or B?
A B

33

TimeTable Filtering for Cumulative:
Implementation Trick for Simplitying the Code

_Avoid code duplication

> We update the earliest start times of activities.
» Can we also update their latest completion times?

8 Ik

Can you imagine an implementation
trick to avoid code duplication?

The code for tightening the maxima
will probably be very similar.

35

’Mini

Mirroring of activities

t=0
. . . s'[i] = —eli]
private final boolean postMirror;
public Cumulative(IntVar[] start, int[] duration, int[] requirement,
this(start, duration, requirement, capa, true);
}
private Cumulative(IntVar[] start, int[] duration, int[] requirement,
}
@Override

public void post() {
for (int 1 = 0; 1 < start.length; 1i++) {
start[1i].propagateOnBoundChange(this);
}

if (postMirror) {

IntVar[] startMirror = Factory.makeIntVarArray(start.length,
getSolver().post(new Cumulative(startMirror, duration, demand, capa, false), false);

}
propagate();

activity i

int capa) {

int capa, boolean postMirror)

1 -> minus(end[1]));

{

1&mi

| NS for Cumulative Scheduling

LNS for scheduling

>» Assume makespan minimization, where
makespan = latest completion time of all the activities.

» Decision variables = start times of the activities.

minimize

The cumulated profile must
C be below the capacity.

38

’Mini

LNS for scheduling

int nRestarts = 1000;

int failureLimit = 100; Do you think the LNS relaxation we used for
Random rand = new java.util.Random(0); the QAP would be good for scheduling?

for (int i = 0; i < nRestarts; i++) {
if (i % 10 == 0)
System.out.println("restart number #" + 1)

dfs.optimizeSubjectTo(obj, statistics -> sta¥istics.numberOfFailures() >= failureLimit,
// Assign the fragment 5% of thg variables randomly chosen
for (int j = 0; j < n; Jj++) {
if (rand.nextInt(100) < 75) {
// after the solveSubjectTo those constraints are removed
cp.post(equal(x[]J], xBest[]]));

)

39

()

’Mini

_>{

LNS for scheduling Lo

> Fixing some variables is a bad idea for scheduling problems because there is
almost zero chance to improve the objective value, and there is a very high
chance to reconstruct exactly the same solution as before.

> |t Is a too rigid relaxation for scheduling problems.
We rather need to be able to reorder activities.

relaxed activities

minimize

40

Partial-order schedule £

> Do not fix the start times of activities at the next restart.

> Instead keep part of the structure (the relative positions of activities) of the
current best solution. For instance, preserve some precedences that are
observed in the current best solution.

> This is the notion of partial-order schedule [Laborie and Godard 2005].

relax some precedences

41

Generalizations of
Cumulative Scheduling

Generalizations of Cumulative

So far, we have assumed that only each start time was a variable,
but in practice...

> ... the durations of activities can also be variables:
— Use timetable filtering but with min(d]i]) instead of d[i] for the filtering of the sJi].

> ... an activity can optionally execute or not on the resource:
— Use a Boolean variable to represent the status, and it must also be filtered.

43

’P‘*ﬂl Tal

Producer-Consumer Problems

> An initial quantity Qo is available at time 0.
» Each producer Pi produces a given quantity Qp; at time Tp; (a variable).

» Each consumer Cj consumes a given quantity Qg; at time Tc; (a variable).
> Constraint: At any time, the remaining quantity is non-negative:

44

Naive Model with Decomposition

St = quantity available at time t:

50 = g
Vi: S5, >0

ViiSp =S+), Op—), Oc

i:1p =t j:TCJ,:t

Again a sum of reifications of constraints for each time step.

Can we do better than this heavy decomposition?

45

’Mini

_Model with a Cumulative Constraint

ends of activities = starts of activities =
times of production times of consumption

46

’Mini

Other Applications of Cumulative

Rectangle packing

Vi,j:ix;+w, S xVX+w, Sx;Vy+h <y;Vy,+h <y,

decision variables per rectangle
= coordinates of its bottom-left
corner: Xx[1], y[1]

48

..

Redundant (aka Implied) Constraint

» Does not exclude any solution but is nevertheless useful since:
— It Improves the pruning.
— It helps the communication between the existing constraints.

» Can you find some good redundant constraints for rectangle packing?

49

Rectangle Packing

50

redundant Cumulative
along y axis

redundant Cumulative
along x axis

L

Project

Implement Cumulative

1. Build the cumulated profile.
2. Check that it never exceeds the capacity.
3. Filter the start times.

Y o

52

’Mini

Solve the Resource-Constrained Project Scheduling Problem 7.

» Each activity executes on several (cumulative) resources
and the requirement on each resource is possibly different.

» Some precedence constraints must hold.
> The objective Is to minimize the makespan.

precedence constraints

resource 1 i I

resource 2

53

Other Filtering for Cumulative

Timetable filtering is not the only filtering

» But timetable filtering is the most scalable filtering and is in practice always
used (sometimes with additional, stronger filtering).

> Interested to know more: The best up-to-date literature review Is
https://school.a4cp.org/summer2017/slidedecks/Resource-Constraints-for-
Scheduling.pdf

> Energetic reasoning
> Timetable edge-finding
> Not-first not-last

>III

55

http://school.a4cp.org/summer2017/slidedecks/Resource-Constraints-for-Scheduling.pdf
http://school.a4cp.org/summer2017/slidedecks/Resource-Constraints-for-Scheduling.pdf

