
Cumulative
Scheduling with CP

Scheduling problems

2

Scheduling = “Allocating scarce resources to activities over time” (Baker, 1974)

Assets of CP for solving scheduling problems:

‣ high-level flexible modeling abstractions for scheduling problems 
(activities, resource constraints, etc)

‣ strong filtering algorithms to prune the search tree

‣ good variable selection strategies during the search

Ex: File download from observation satellite

3

‣Activities (aka jobs): file transfers
‣Resources:

– download channels: limited number of simultaneous downloads
– memory banks: cannot simultaneously download files on the same memory bank

‣Objective:
– download as much data as possible within a given time window

Ex: Planning Philae mission on comet 67P

4

‣ Activities: scientific experiments

‣ Resources:

• batteries: threshold on the instantaneous energy requirement

• memory: experiments produce data; transfers are only possible when the spacecraft
Rosetta (from which the lander module Philae is released) is visible

‣ Objective: maximize the lifespan of the batteries

[Hebrard, ACP Summer School 2017]

Ex: Train scheduling with interlocking

5

‣Activities: trains going through a station, each with a set of possible routes
‣Resources: track segments (only one train at a time, to avoid accidents)
‣Objective: maximize the train throughput during a time window

[Cappart & Schaus, CPAIOR 2017]

Ex: Caster scheduling for steel production

6

‣Activities: process pockets of molten metal (heat)
‣Resources: converter, degasser, caster
‣Objective: minimize the makespan

[Gay & Schaus, CP 2014]

Decomposition of Cumulative

Attributes of a cumulative activity

8

activity i

d[i]s[i]

r[i]

e[i]

For this activity i:
s[i] ∈ [0,7] : start time

d[i] = 4 : duration
r[i] = 2 : resource requirement

e[i] = s[i] + d[i] (a view):
activity i ends just before e[i]

activity i

s[i] ē[i]

0 1 2 3 4 5 6 7 8 9 10 11

1

2

 public Cumulative(IntVar[] s, int[] d, int[] r, int C)

Cumulative constraint [Aggoun & Beldiceanu, 1993]

9

start duration resource
requirement

resource
capacity

At any time t, the total resource requirement by the activities running at t 
does not exceed the resource capacity C:

Cumulative constraint

10

∀t : ∑
i : si≤t<ei

ri ≤ C

Reminder: Reified constraints

11

‣ means that b is true iff
‣D(x) = {1,2,3} D(y)={0,1,5} D(b)={false, true}

b ≡ x ≤ y x ≤ y

Reminder: Reified constraints

12

‣ means that b is true iff
‣D(x) = {1,2,3} D(y)={0,1,5} D(b)={false, true}

b ≡ x ≤ y x ≤ y

Reminder: Reified constraints

13

‣ means that b is true iff
‣D(x) = {1,2,3} D(y)={0,1,5} D(b)={false, true}

b ≡ x ≤ y x ≤ y

Decomposition of Cumulative

14

Let A be the set of activities and H the time horizon of the project:

• Reify whether an activity runs at time t, encoding false as 0 and true as 1:

• Enforce that the cumulated requirement over all activities is always at most
the capacity C:

∀t ∈ [0,H) : ∑
i∈A : si≤t<ei

ri ≤ C

∀i ∈ A : ∀t ∈ [0,H) : oi,t ∈ {0,1} ∧ oi,t ≡ si ≤ t < ei

∀t ∈ [0,H) : ∑
i∈A

oi,t ⋅ ri ≤ C

Decomposition of Cumulative

15

Consider the following example, where s[i] = {4,5,6}: 

 
 
 
 

• If activity i starts late (at 6), then it overlaps the interval [6,7]
• If activity i ends early (at 8), then it overlaps the interval [6,7] 
 

reified constraints

activity i

0 1 2 3 4 5 6 7 8 9 10 11

s[i] e[i]s[i] e[i]

s[i] ≤ s[i] = 6 < e[i] ≤ e[i] ≡ oi6 = 1

s[i] ≤ s[i] ≤ 7 < 8 = e[i] ≤ e[i] ≡ oi7 = 1

Reified constraints for i at t = 6:

Reified constraints for i at t = 7:

reified constraints

How does the decomposition work?

16

activity i

1 2 3 4 5 6 7 8 9 10 11

activity j

r[i]=1

r[j]=1
C=1 (i.e., the two activities cannot overlap)

s[i] ē[i]e[i]s[i]

s[i] ≤ s[i] = 6 ≤ 6 < 8 = e[i] ≤ e[i] ≡ oi6 = 1
s[i] ≤ s[i] = 6 ≤ 7 < 8 = e[i] ≤ e[i] ≡ oi7 = 1

s[i] ∈ [4,6], e[i] ∈ [8,10], d[i] = 4
s[j] ∈ [4,8], e[j] ∈ [8,12], d[j] = 4

Reified constraints for i at t = 6 and t = 7:

12

How does the decomposition work?

17

activity i

1 2 3 4 5 6 7 8 9 10 11

activity j

r[i]=1

r[j]=1
C=1 (i.e., the two activities cannot overlap)

s[i] ē[i]e[i]s[i]

Sum constraint at t = 6:

oi6 ⋅ r[i] + oj6 ⋅ r[j] ≤ 1 ⇔ 1 + oj6 ≤ 1 ⇔ oj6 = 0 ⇔ s[j] > 6, as e[j] ∈ [8,12]

12

Sum constraint at t = 7:

oi7 ⋅ r[i] + oj7 ⋅ r[j] ≤ 1 ⇔ 1 + oj7 ≤ 1 ⇔ oj7 = 0 ⇔ s[j] > 7, as e[j] ∈ [8,12]

How does the decomposition work?

18

activity i

1 2 3 4 5 6 7 8 9 10 11

activity j

r[i]=1

r[j]=1
C=1 (i.e., the two activities cannot overlap)

s[i] ē[i]e[i]s[i]

12

s[j] ∈ {8} and e[j] ∈ {12}

oj8 = oj9 = oj10 = oj11 = 1
Reified constraints for j at t = 8, 9, 10, and 11:

Sum constraint at t = 8:

oi8 ⋅ r[i] + oj8 ⋅ r[j] ≤ 1 ⇔ oi8 = 0 ⇔ e[i] ≤ 8
Sum constraint at t = 9:

oi9 ⋅ r[i] + oj9 ⋅ r[j] ≤ 1 ⇔ oi9 = 0 ⇔ e[i] ≤ 9

Drawback of the decomposition

19

‣Discretization of time + reified constraint at each time
‣Heavy fixpoint computation: runtime proportional to H

‣H = 10 hours, n = 10 activities
‣Time unit = 1 minute: 6,000 variables and 600 sum constraints 😢
‣Time unit = 1 second: 360,000 variables and 36,000 sum constraints 😭

3 10…………. 11 12 …………. 100 101 ….

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ H

0 1 2

TimeTable filtering

20

We would prefer, for n activities:
‣To limit the number of variables and make sure it depends only on n
‣To compute the fixpoint with a time complexity that depends only on n

TimeTable filtering is used to do the same filtering but faster: O(n2) time.

TimeTable Filtering for Cumulative:
Checking Feasibility with a Profile

Checker

22

Assume for now that all the start variables are fixed:
‣How do we check if a Cumulative constraint is satisfied?
‣What is the time complexity?

C
The cumulated profile must

always be at most the capacity.

Checker: Approach

23

‣For n activities, the cumulated profile has at most 2n rectangles.
‣Build the cumulated profile  

and check that none of its rectangles exceeds the capacity.

0

1

1 2 3 4 5 6

2

3

Checker: Activity Events

24

‣Public class Event(int t, int h)
‣For start event: t = start,

h = requirement; for end event:
t = end, h = -requirement
‣Create events: Event(0,1),

Event(4,-1), Event(1, 2), Event(3,-2),
Event(3,1), Event(5,-1), Event(4,2),
Event(7,-2)
‣Sort events following time:

Event(0,1), Event(1, 2), Event(3,-2),
Event(3,1), Event(4,-1), Event(4,2),
Event(5,-1), Event(7,-2)

s = 0, r = 1, d = 4

s = 1, r = 2,
d = 2

s = 3, r = 1,
d = 2

s = 4, r = 2, d = 3

0

1

1 2 3 4 5 6

2

3

t 0 4 1 3 3 5 4 7
h 1 -1 2 -2 1 -1 2 -2

Checker: Activity Events

25

‣We iterate over events and compute
the cumulated height at all times t
‣ It takes O(n) time to process all

events
‣Between two adjacent times with

different cumulated heights a new
rectangle of the profile is created.
‣ It takes O(n log n) time to sort all

events
‣So the overall time complexity of the

checker is O(n log n)

t 0 1 3 3 4 4 5 7
h 1 2 -2 1 -1 2 -1 -2

Height 1 3 2 3 2 0

0

1

1 2 3 4 5 6

2

3

Let’s code this algorithm

26

public class Profile {
 static class Event {
 private final int t;
 private final int h;
 }
 static class Rectangle {
 private final int start;
 private final long dur;
 private final int height;
 private final int end;
 }

 private final Rectangle[] profileRectangles;

 public Profile(Rectangle... rectangles) {
 // compute the profile rectangles in two steps
 // step1: create timeline
 // step2: sweep
 this.profileRectangles = profile.toArray(new Rectangle[0]);
 }
}

Step 1: Create timeline

27

Two dummy
entries

public class Profile {

 private final Rectangle[] profileRectangles;

 public Profile(Rectangle... rectangles) {
 // step1: create timeline (slide before)
 ArrayList<Rectangle> profile = new ArrayList<Rectangle>();
 Event[] events = new Event[2 * rectangles.length + 2];
 for (int i = 0; i < rectangles.length; i++) {
 Rectangle r = rectangles[i];
 events[i] = new Event(r.start, r.height);// start events
 events[rectangles.length + i] = new Entry(r.end, -r.height); // end events
 }
 points[2 * rectangles.length] = new Event(Integer.MIN_VALUE, 0); //dummy start
 points[2 * rectangles.length + 1] = new Event(Integer.MAX_VALUE, 0); //dummy end

 Arrays.sort(events);
 // step2: sweep (next slides)
 this.profileRectangles = profile.toArray(new Rectangle[0]);
 }
}

Step 2: Sweep

28

public class Profile {

 private final Rectangle[] profileRectangles;

 public Profile(Rectangle... rectangles) {
 // step1: create timeline (previous slide …)
 // step2: sweep
 int sweepHeight = 0;
 int sweepTime = points[0].key;
 for (Event e : events) {
 int t = e.key;
 int h = e.value;
 if (t != sweepTime) {
 profile.add(new Rectangle(sweepTime, t - sweepTime, sweepHeight, t));
 sweepTime = t;
 }
 sweepHeight += h;
 }
 this.profileRectangles = profile.toArray(new Rectangle[0]);

 }
}

TimeTable Filtering for Cumulative:
Filtering Time Bounds

Activity: Definitions

30

At any time t, the total requirement by the activities running at t  
does not exceed the capacity C.

s[i]

activity i

e[i]

activity i

The mandatory part of activity i only exists if e[i] > s[i].

mandatory i

Whatever the value of s[i],
activity i will run during

its mandatory part.

e[i]s[i]

s[i] e[i]

Mandatory profile

31

In practice, during search, not all the start variables are fixed yet, 
so there is some flexibility when activities can be scheduled:

Mandatory part: we are sure that this activity will run during
this time interval whatever its eventual start time.

Not every activity has a mandatory part.

The mandatory profile is optimistic,
as it is built solely from the mandatory parts of the activities.

Timetable filtering

32

Update of the lower bound: update the minimum start time to the earliest time
where it is not in conflict with the mandatory profile.

C

mandatory profile

earliest start

Time complexity?

O(n) time per activity since the mandatory
profile has O(n) intervals: O(n2) time overall.

No mandatory part!Now with mandatory part:
update mandatory profile!

Do not push the start of an activity beyond its mandatory part (which would
be infeasible), because the latter is in the mandatory profile and thus proven
to be feasible.

Be careful with activities with mandatory part

33

C

mandatory profile

update the earliest start to A or B?

A B

A B

TimeTable Filtering for Cumulative:
Implementation Trick for Simplifying the Code

Avoid code duplication

35

‣We update the earliest start times of activities.
‣Can we also update their latest completion times?

activity i

Can you imagine an implementation
trick to avoid code duplication?

The code for tightening the maxima
will probably be very similar.

Mirroring of activities

36

private final boolean postMirror;

public Cumulative(IntVar[] start, int[] duration, int[] requirement, int capa) {
 this(start, duration, requirement, capa, true);
}
private Cumulative(IntVar[] start, int[] duration, int[] requirement, int capa, boolean postMirror) {
 // …
}
@Override
public void post() {
 for (int i = 0; i < start.length; i++) {
 start[i].propagateOnBoundChange(this);
 }

 if (postMirror) {
 IntVar[] startMirror = Factory.makeIntVarArray(start.length, i -> minus(end[i]));
 getSolver().post(new Cumulative(startMirror, duration, demand, capa, false), false);
 }
 propagate();
}

activity i

t=0

mirror of activity i

s'[i] = –e[i]

LNS for Cumulative Scheduling

LNS for scheduling

38

‣Assume makespan minimization, where  
makespan = latest completion time of all the activities.
‣Decision variables = start times of the activities.

C
The cumulated profile must

be below the capacity.

minimize

LNS for scheduling

39

int nRestarts = 1000;
int failureLimit = 100;
Random rand = new java.util.Random(0);

for (int i = 0; i < nRestarts; i++) {
 if (i % 10 == 0)
 System.out.println("restart number #" + i);

 dfs.optimizeSubjectTo(obj, statistics -> statistics.numberOfFailures() >= failureLimit, () -> {
 // Assign the fragment 5% of the variables randomly chosen
 for (int j = 0; j < n; j++) {
 if (rand.nextInt(100) < 75) {
 // after the solveSubjectTo those constraints are removed
 cp.post(equal(x[j], xBest[j]));
 }
 }
 }
);
}

Do you think the LNS relaxation we used for
the QAP would be good for scheduling?

😢

LNS for scheduling

40

‣Fixing some variables is a bad idea for scheduling problems because there is
almost zero chance to improve the objective value, and there is a very high
chance to reconstruct exactly the same solution as before.

‣ It is a too rigid relaxation for scheduling problems. 
We rather need to be able to reorder activities.

minimize

relaxed activities

😢

Partial-order schedule

41

‣Do not fix the start times of activities at the next restart.
‣ Instead keep part of the structure (the relative positions of activities) of the

current best solution. For instance, preserve some precedences that are
observed in the current best solution.
‣This is the notion of partial-order schedule [Laborie and Godard 2005].

relax some precedences

Generalizations of
Cumulative Scheduling

Generalizations of Cumulative

43

So far, we have assumed that only each start time was a variable, 
but in practice…
‣… the durations of activities can also be variables:

– Use timetable filtering but with min(d[i]) instead of d[i] for the filtering of the s[i].

‣… an activity can optionally execute or not on the resource:
– Use a Boolean variable to represent the status, and it must also be filtered.

Producer-Consumer Problems

44

‣An initial quantity Q0 is available at time 0.
‣Each producer Pi produces a given quantity QPi at time TPi (a variable).
‣Each consumer Cj consumes a given quantity QCj at time TCj (a variable).
‣Constraint: At any time, the remaining quantity is non-negative:

∀t : Q0 + ∑
i:TPi≤t

QPi
− ∑

j:TCj≤t

QCj
≥ 0

Naïve Model with Decomposition

45

St = quantity available at time t :

Again a sum of reifications of constraints for each time step.
Can we do better than this heavy decomposition?

S0 = Q0

∀t : St ≥ 0

∀t : St+1 = St + ∑
i:TPi=t

QPi
− ∑

j:TCj=t

QCj

Model with a Cumulative Constraint

46

Producers

Consumers

ends of activities =
times of production

starts of activities =
times of consumption

∑
i

QPi

Q0

∑
j

QCj

TCj
TPi

Other Applications of Cumulative

Rectangle packing

48

1
4

2

3

5

w[1]

h[1]

decision variables per rectangle
= coordinates of its bottom-left

corner: x[1], y[1]

i left of j j left of i i below j j below i

∀i, j : xi + wi ≤ xj ∨ xj + wj ≤ xi ∨ yi + hi ≤ yj ∨ yj + hj ≤ yi

Redundant (aka Implied) Constraint

49

‣Does not exclude any solution but is nevertheless useful since:
– It improves the pruning.
– It helps the communication between the existing constraints.

‣Can you find some good redundant constraints for rectangle packing?

Constraint Store

Domain Store

Constraint

Constraint

Constraint

Constraint

Redundant
Constraint

Rectangle Packing

50

1 4

2
3

5

redundant Cumulative
along y axis

redundant Cumulative
along x axis

Project

Implement Cumulative

52

1. Build the cumulated profile.
2. Check that it never exceeds the capacity.
3. Filter the start times.

🧑💻👩💻

Solve the Resource-Constrained Project Scheduling Problem

53

‣Each activity executes on several (cumulative) resources 
and the requirement on each resource is possibly different.
‣Some precedence constraints must hold.
‣The objective is to minimize the makespan.

minimize

resource 1

resource 2

precedence constraints

Other Filtering for Cumulative

Timetable filtering is not the only filtering

55

‣But timetable filtering is the most scalable filtering and is in practice always
used (sometimes with additional, stronger filtering).
‣ Interested to know more: The best up-to-date literature review is 

https://school.a4cp.org/summer2017/slidedecks/Resource-Constraints-for-
Scheduling.pdf

‣Energetic reasoning
‣Timetable edge-finding
‣Not-first not-last
‣…

http://school.a4cp.org/summer2017/slidedecks/Resource-Constraints-for-Scheduling.pdf
http://school.a4cp.org/summer2017/slidedecks/Resource-Constraints-for-Scheduling.pdf

